Introduction to Machine Learning

Lecture 18: Elementary Reinforcement Learning — Stochastic Environment
Dec 31, 2025

Jie Wang

Machine Intelligence Research and Applications Lab
Department of Electronic Engineering and Information Science (EEIS)
http://staff.ustc.edu.cn/~jwangx/

jlewangx@ustc.edu.cn

MiRA

Machine Intelligence Research and Applications Lab

Contents

- Stochastic Environment
* Planning Algorithms

* Learning Algorithms

Stochastic Environment

Grid World

A
2
1
P - g
0 () \

State Transition

State transition probabilities:

0.8 After the agent picks and performs a certain action, there are four
. possibilities for the next state: the destination state, the current
0.05 .. 0.05 state, the states to the right and left of the current state. If the
0.1 states are reachable, the corresponding probabilities are 0.8, 0.1,

0.05, and 0.05, respectively; otherwise, the agent stays where it is.

State Transition

0.8 9

¢—6

0.05 -~ ~ 0.05
0

[.1 \ ’ A
\Iw -
/ v

P((2,1)|(2,0),up) = 0.8 P((3,0)[(2,0),up) = 0.05

State Transition

A
0.05
o~ 9
N\
G >
'& 0.1 I ar :
7 0.8 Q ’
0.05 0
> . B
0 1 2 3 P((0,0) | (0,1),right) = 0.05
A
2
1
O {
> >

After the agent picks and performs a certain action at its current
state, it receives rewards of 100, -100, and O, if it arrives at states
> (3,2), (2,2), and all the other states, respectively.

0 1 2 3
0.8
¢—6
0.05 . 0.05
0.1
. 4/

E[r((2,0),up)] = 0.8 x 0+ 0.1 x 0+ 0.05 x 0+ 0.05 x 0 = 0

E[r((2,1),up)] = 0.8 x 0+ 0.1 x 0+ 0.05 x —100 + 0.05 x 0 = —5
E[r((2,2),right)] = 0.8 x 100 + 0.1 x 0 + 0.05 x 0 4 0.05 x 0 = 80

E[r((3,0),left)] = 0.8 x 0+ 0.1 x 0+ 0.05 x —100 + 0.05 x 0 = —5

Markov Decision Process (MDP)

Indeed, we have already introduced the so-called MDP, which is defined (rigorously) by

a set of states §, possibly infinite MRT Chapter 14

a set of actions 4, possibly infinite .

an initial state sp € S

a probability P[s’|s, a] : distribution over destination states s =4(s,a)
a probability P[r|s, a]: distribution over rewards r’ = (s, a)

This model is Markovian because the transition and reward probabilities only depend on the
current state and the action picked and performed at the current state, instead of the
previous sequence of states and actions performed.

In this lecture, we assume that
s the states and the actions are finite

https://cs.nyu.edu/~mohri/mlbook/

Value Function

« Suppose that a policy 7 is given.

- Starting from an arbitrary state S¢, the expected cumulative reward by following 7 is

V7™ (s¢) == B[Ry + yRyq1 + VZRHg + ... Sy = s¢]

ZV Rt—l—z‘St — St]

1=0

random variable

Value Function

A A

I L] L]

1 1 r

0 0

>
0 | 2 3 0 | 2 3
0.9 A “good” policy 771 A bad policy 72
=Y.

How to find V™! and /™27

Value Function

- Tower property
EX|Y] = EE[X|Y, Z]|Y]

« Asimpler version
ElX] = E[E[X|Z]

- Example: how to find the average height of the men in China?

E[height] = E[E[height|province]] = 2 P (province) E[height|provin

province

Value Function — Bellman Equation

« Starting from an arbitrary state S, the expected cumulative reward by following 7 is

©.@)
Y A RiyilSi = St]
1=0
a+ at4-1 At42

St > St+1 > St+2 > .
T Tt41 Ti4-2

V™(sy) :=E[R; + YRit1 + Y Riyo + ... 1S = s)] = E

a; = m(s¢) e =1r(St,a8) Ser1 = 0(S¢, az)

random variable

* Bellman Equation

V™ (s) = E[r(s,n(s))] +7v) _P(s']s,7(s))V"(s)

Value Function — Bellman Equation

« Starting from an arbitrary state S, the expected cumulative reward by following 7 is

oo
E V'Teyilse =8

1=0

VW(S) = E[Tt T YT t+1 T 727354_2 + ... ’315 = 8] = E

at At+1 At4-2
St T > St+1 Tt_|_1> St12 ’I“t_|_2> c .

random variable
* Bellman Equation
V7T (s) =E[rs + v (rep1 +y7eq42 +..0) |St = 5]
=E[r(s,7(s))] + VE [E[ri11 +Yrip2 + ... |Sie1 = 5", Sy = s||S; = 5]
(()) +E :E[Tt—l—l + YTt + ... ’St—i—l = S/HSt = S]
=E[r(s,m(s))] + vE[V™(s")|S; = 5]
(s, m(s)] +7 Y _P(s|s, m(s))V™(s)

Value Function — Bellman Equation

 Bellman Equation

o~~~ o~~~
AN AN AN AN AN AN AN AN N N N

S N N N N N N N N N N N

PN N N N N N N N N
111111111111

0.8
0

0.8

i)
oo T oocoTooo<L o
< S S

8
5

SO O OO —H OO O o oo

o0 a
000000000000

0 10
co Q@ YToocooocoo o
o o

o0 +— OO
CS sSSP eococococo0
10 o 0
0.0.0.000000000
o o
0
—
=

0
0
0
0
+78
0
0
0
0
0

e N N i R R R N N R i
AN AN AN AN AN AN AN AN N N N

P N N N N N N N N N N

SN N N N N N e e N N N
111111111111

A “good” policy 7717

Value Function — Bellman Equation

 Bellman Equation

o~~~ o~~~
AN AN AN AN AN AN AN AN N N N

S N N N N N N N N N N N

PN N N N N N N N N
111111111111

0.8
0

0.8

i)
oo T oocoTooo<L o
< S S

8
5

SO O OO —H OO O o oo

o0 a
000000000000

0 10
co Q@ YToocooocoo o
o o

o0 +— OO
CS sSSP eococococo0
10 o 0
0.0.0.000000000
o o
0
—
=

0
0
0
0
+78
0
0
0
0
0

e N N i R R R N N R i
AN AN AN AN AN AN AN AN N N N

P N N N N N N N N N N

SN N N N N N e e N N N
111111111111

A “good” policy 71

V=R+~TV

Value Function — Bellman Equation

 Bellman Equation

V™ (s) = El[r(s,m(s))] + 7Y _ P(s'|s,m(s)) V()

V=R+4+~TV

]

V=I-~T)"'R

A “good” policy 71

Value Function — Bellman Equation

 Bellman Equation

V™ (s) = El[r(s,m(s))] + 7Y _ P(s'|s,m(s)) V()

0 1 2 3 invertible?
A “good” policy 71

Value Function — Bellman Equation

 Bellman Equation

V7(s) = Elr(s,m(s))] +7) _P(s'|s, m(s))V"(s)
8/
,r\
9 ’ Theorem: For a finite MDP, Bellman’s equation
I admits a unique solution that is given by
. S . PA V=(-~1)"'R
0 R + The vector R and matrix I’ depend on the policy

A “good” policy 71

The Learning Task Revisited

* The learning task for RL scenarios is to learn an optimal policy in the sense that

" = argmax_ V7" (s), Vs.

0 1 2 3 0 1 2 3
A good policy 1 A bad policy 72

 For m and 9, we have

VTi(s) > V™ (s), Vs.

* Indeed, 7 is the optimal policy.

The Q Function

Learning the optimal policy is challenging

« An alternative approach to find the optimal policy indirectly is by computing the
state-action value function (Q function)

Q(s,a) = Elr(s,a)] + 7)Y _ P(s'|s,a)V*(s')

Q(s, a) is the expected accumulated reward by

performing the action a first and then following the
* The definition of the optimal policy implies that
7" (s) = argmax, Q(s, a)
* Notice that

« All together, we have

Q(s,a) = (s, a)] "‘72[(s'|s,a maXQ(S a)}

a’

Quiz

* The learning task for RL scenarios is to learn an optimal policy in the sense that

7" = argmax,_V"(s), Vs.
A A

2 2

1 ; 1 &
o

0 d) 0

o N
0 1 2 3 0 1 2 3

What are the best actions at states (3,0)
and (2,1), i.e., 1*((3,0)) and
m*((2,1))?

Planning Algorithms

Planning

« Planning: we assume that the agent has perfect knowledge of the environment; thus,
to find the optimal policy, there is no need for the agent to actually perform actions and

interact with the environment
A

0 1 2 3

Known

P(s'|s, a): state transition
P(r[s,a) : reward

Value Iteration

« Value iteration aims to find the optimal value function and thus the optimal policy

Initialize V (s) to arbitrary values

while termination conditions does not hold
For s € S
For a € A
Q(s,a) « Elr(s,a)] +v) P(s'|s,a)V(s)

S

V(s) < max Q(s,a)

Value Iteration

« Value iteration aims to find the optimal value function and thus the optimal policy

A
Example
2 V0
Q((0,0),up) « 04 0.9 x (0.8 x V((0,1)) + 0.1 x V((0,0)) + 0.05 x V((0,0)) + 0.05 x V((1,
1 - Q((0,0),down) + 0+ 0.9 x (0.95 x V((0,0)) 4+ 0.05 x V((1,0))) =0
Q((0,0),left) < 0+ 0.9 x (0.95 x V((0,0)) +0.05 x V((0,1))) =0
- Q((0,0),right) < 0+ 0.9 x (0.8 x V((1,0)) 4 0.15 x V((0,0)) + 0.05 x V((0,1))) =
0) V((0,0)) = max{Q((0,0),up), Q((0,0),down), Q((0,0), left), Q((0,0), right) } = 0
= >

0))) =0

Value lteration

« Value iteration aims to find the optimal value function and thus the optimal policy

A
Example
2 V0
Q((0,0),up) < 04 0.9 x (0.8 x V((0,1)) + 0.1 x V((0,0)) +0.05 x V((0,0)) + 0.05 x V((1,0))) = 0
| Q((0,0),down) + 0+ 0.9 x (0.95 x V((0,0)) 4+ 0.05 x V((1,0))) =0
Q((0,0),left) < 0+ 0.9 x (0.95 x V((0,0)) +0.05 x V((0,1))) =0
) Q((0,0),right) < 0+ 0.9 x (0.8 x V((1,0)) 4 0.15 x V((0,0)) + 0.05 x V((0,1))) =
0 & p V((0,0)) = max{Q((0,0),up), Q((0,0),down), Q((0,0), left), Q((0,0), right) } = 0
— >

Nothing happens

Value Iteration

« Value iteration aims to find the optimal value function and thus the optimal policy

A
Example
2) V<+20
— Q((2,2),up) «+ 54+0.9x (0.9 x V((2,2)) +0.05 x V((1,2)) +0.05 x V((3,2))) =
1 oy Q((2,2),down) < 5+ 0.9 x (0.8 x V((2,1)) + 0.1 x V((2,2)) + 0.05 x V((1,2)) + 0.05 x V((3,2))) =5
Q((2,2),left) < 0+ 0.9 x (0.8 x V((1,2)) 4 0.15 x V((2,2)) + 0.05 x V((2,1))) =0

Q((2,2),right) < 80 + 0.9 x (0.8 x V((3,2)) + 0.15 x V((2,2)) + 0.05 x V((2,1))) =
0 V((2,2)) < max{Q((0,0), up), Q((0,0), down), Q((0, 0), left), Q((0, 0), right)} = 80

>

Value Iteration

« Value iteration aims to find the optimal value function and thus the optimal policy

e
R .,{
%
e R
" ; " <
A N
e 1+ 5 L] L] I
N . L / o
| e % o, W4
SR\ T B () 4
N, o o 7
b ko
SR &
¥ 3T \T 4 7

VALUES

Value Iteration

« Value iteration aims to find the optimal value function and thus the optimal policy

* The key to the proof is the contraction mapping theorem

Policy Iteration

Policy iteration improves the policy directly

Initialize 7 <+ mo, ™’ # my
while(r # ')
Ve (I —~T")'R"
T
For s € S
7(s) < argmax, E[r(s,a)] +~ Z P(s'|s,a)V(s)

S

Policy Iteration

* Policy iteration improves the policy directly

A
) | - Initialize 7 < mo, 7 % T2
’ while(r # 7')
{ 15t Ve (I —~T™) 'R™
& '
0 For s S
> 7(s) + argmax, E[r(s,a)] +72P(s’|s,a)V(s’)
0 1 2 3 s/

A bad policy T2

Policy Iteration

Policy iteration improves the policy directly

| - 15t iteration

V’T('

A bad policy 72

—

ARV VYA YA Y Y
3 03 3 3 3 3 3 3 3 3

_—
<
3

~» ~» ~»

~»

~»

~ ~» ~»

~»

S N S NN SN SN S,N NN, N,
wwuowvwowwwo
O DN NN = = —= OO O O
N— e’ e e e e e e N N N

~»

N—

11 states in total

Policy Iteration

Policy iteration improves the policy directly

~ = N
OOOK_uOowOOO%O
N -~
]
~ N
e e A" e A
ER-EEiR--ECIR-h-ih-NS
5 eh 3 3 80 sb L 8D Bh Bh £
S P "R PR CA R DR DR B Ea

[
7 N —~ 7 N L~ - - P Py
O)OO)))\I/\I/\I/)

-~ O -

. = —~ AN AN AN

3 -~ -~

LN

LN

LN

LN

[N

T S— e N e N N

~ — &
~
(

S~ <

&~

~

~

~

~
g

15t jteration

I
(S
5

A bad policy 72

Policy Iteration

* Policy iteration improves the policy directly

A bad policy 72

15t jteration

0.15
0
0

0.05
0.2
0.05
0

SO O OO oo

0

0.8
0.1
0.8

0

cCoococoso O

5

— o @ O
ot Ot

0.
0.

SO O OO oo

<
00

o O O

<
©

<
cCoo oo o

ot

o O

-
OC)O

-

-
—_

<
P e e Nl

ot

<
R e Ml e Ml '

ot

=
o0

S o oo

-]

-

ot

ot

gOOOOOOO

0 0
0 0
0 0
0 0
0 0
0.05 0
0 0
0 0
0.8 0
0.15 0.8
0 1

—

Policy Iteration

* Policy iteration improves the policy directly

% 15t jteration
2| 65.22° 77.22 7 87.94)

1| 1822), Ve(l—yTW)_lR"T:

87 31

11.70 - - -

faXalilimdla) 707Q faXo X atm >
uuuuu TJ. 1O OO0 0OJ

0 1 2 3
A bad policy 72

(11.70 \

—66.03
—75.78
—68.89
18.22
—87.31

65.22
77.22
87.94

Policy Iteration

* Policy iteration improves the policy directly

15t jteration: update the policy

A Q((0,0),up) =E[r((0,0), up)] + 0.9 x (0.8 x V((0,1)) + 0.15 x V((0,0)) + 0.05 x V((1,0)))
=0+0.9 x (0.8 x 18.22 4+ 0.15 x 11.70 + 0.05 x —66.53)
=11.70

2| 65.22° 77.22 7 87.94)

Q((0,0),down) =E[r((0,0),down)] + 0.9 x (0.95 x V((0,0)) 4+ 0.05 x V((1,0)))
0N —0+ 0.9 % (0.95 x 11.70 + 0.05 x (—66.53))
1| 18.22" SSSa@N - > =7.01

| 87 31 |7 Q((0,0), left) =E[r((0,0), left)] + 0.9 x (0.95 x V((0,0)) + 0.05 x V((0,1)))

=0+ 0.9 x (0.95 x 11.70 + 0.05 x 18.22)

11.70 | - - - 10.89
66—53——F5— 68— 65——>
0 1 2 3 Q((0,0), right) =E[r((0,0), 1ight)] + 0.9 x (0.8 x V((1,0)) +0.15 x V((0,0)) + 0.05 x V((0,1)))
: =0+ 0.9 x (0.8 x (—66.53) + 0.15 x 11.70 + 0.05 x 18.22)
A bad policy 7o uneo

7-‘-((07 0)) :argmax{up, down, left, rlght}{Q((Oa 0)7 up)7 Q((Oa 0)7 dOWIl), Q((()? O)a left)a Q((07 0)7 right)}
=up

Policy Iteration

* Policy iteration improves the policy directly

A
2 B7.94 S
1 = Py
01 1170 j & _ ’

o (o

oo b e

A bad policy 72

15t iteration: update the policy

m((0,0)) = up
7((1,0)) = left
7((2,0)) = left
7((3,0)) = down
m((0,1)) = up
w((2,1)) = up
7((3,1)) = END
7((0,2)) = right
7((1,2)) = right
7((2,2)) = right
7((3,2)) = END

Policy Iteration

-

Policy AFTER 0 ITERATIONS

Policy AFTER 2 ITERATIONS

Policy AFTER 3 ITERATIONS

VALUES AFTER 1 ITERATIONS

VALUES AFTER 2 ITERATIONS

VALUES AFTER 3 ITERATIONS

VALUES AFTER 4 ITERATIONS

59.24

56.58<85.22

25.40

60.86

50.24

18.22X18.22

11.71

63.54

-46.47

46.53

-70.1)87.31

-71.35

0.00

66.96

66.01X73.79

60.42

11.76

10.83%45.51

7.01

-56.78

-3.55X66.53

-56.78

=75.78

-62.0863.73

-67.47

=92.71

-68.8%63.87

-62.28

64.80

58.35X58.35

52.35

66.65X66.93

37.57

0.00

66.96

66.01X73.79

60.42

Q-VALUES AFTER 1 ITERATIONS

56.52

51.24X46.27

50.55

44.77

49.62)}X41.46

44.77

60.52

45.18X19.54

39.46

-76.07

29.42X 6.99

14.02

64.80

58.35X38.35

52.35

66.90

66.01X73.79

60.42

67.49,X66.10

50.89

0.00

64.80

58.36)X58.36

52.60

67.56X66.09

51.14

0.00

Q-VALUES AFTER 2 ITERATIONS

56.52

51.24X46.27

50.55

45.60

49.62)X54.78

45.60

63.67

47.67X45.94

55.93

-70.76

47.22X35.37

43.24

56.86

51.53X51.06

51.14

50.97

51.05X56.21

50.97

64.01

52.46)<46.19

56.52

-70.71

47.50)<35.62

43.50

Q-VALUES AFTER 3 ITERATIONS

Q-VALUES AFTER 4 ITERATIONS

three
iterations
to
converge

Policy Iteration

Policy AFTER 0 ITERATIONS Policy AFTER 3 ITERATIONS

Is this an always winning policy?

Policy Iteration

- What if the reward for getting into (3,1) is -10007?

Policy AFTER 9 ITERATIONS

This is an always winning policy (why?).

Policy Iteration

Policy AFTER 3 ITERATIONS Policy AFTER 9 ITERATIONS

« For the same task, different reward strategies lead to different optimal policy

* According to your preference, you need to carefully design your reward strategy

Learning Algorithms

Learning

« Learning: as the environment model, i.e., the transition and reward, is unknown, the
agent may need to learn them based on the training information.

A

0 1 2 3

Unknown

P(s'|s,a): state transition
P(r|s,a) : reward

Learning

» Learning: as the environment model, i.e., the transition and reward probabilities, is
unknown, the agent may need to learn them based on the training information.

« Model-free approach: the agent learns the optimal policy directly, e.g., Q-learning

* Model-based approach: the agent first learns the environment model and then the
optimal policy

Examples of training data

0.0 up 01up Ozright12right23right32
— — — — —_>
()) O ()) O (H) 0 (1)) O (bl)100(1))

up

right
(1.0) =4 2.0)

right
(2,1)—(3,1)
-100

Nondeterministic Rewards and Actions

?
Unknown
&—6 / .
? | Y, P(s'|s,a): state transition
? P(r|s,a) : reward

How to find the optimal policy without the state transition and reward probabilities?

The Q-learning Algorithm

Recall the Q-learning algorithm for the deterministic environment
* Initialize the matrix Q to zero

 Observe the current state s
Do forever:

* Pick and perform an action a : _
. Receive immediate reward r What if r and s* become random variables

- Observe the new state s’
- Update

Q(s,a) « r+ymaxQ(s', a’)

A sufficient condition for Q(s,a) to converge is to visit each state-action pair infinitely often

The Q-learning Algorithm

* For the stochastic environment, we replace the random variables with their
expectations in the definition of Q values.

the running average the running average the estimatiqn of
on n+1 samples on n samples the expectation of

AV

The Q-learning Algorithm

Initialize Q arbitrarily
For all episodes

Initialize s Alpaydin 2014, Chapter 18

Repeat
Choose a using policy derived from @), e.g., e-greedy
Take action a, observe r and s’
Update Q(s, a):
1
O G

Qs,a) = Q(s,0) + an(r + ymax Q(s', a') — Q(s, a))

/
S< S

Until s is goal state

There are other ways to select (¢, to guarantee that () converges to
its optimal value. Mmitchell 1997, Chapter 13

http://www.cs.cmu.edu/afs/cs.cmu.edu/user/mitchell/ftp/mlbook.html
https://mitpress.mit.edu/books/introduction-machine-learning-third-edition

The Q-learning Algorithm

00" 0% 02122 232 5.2)

e =0.3

« an example episode
 the initial state in each episode
could NOT be fixed (why?)

The Q-learning Algorithm

A
2 4>
A
1 R
A A
0
>
0 1 2 !

00" 0% 02122 232 5.2)

e =0.3

« an example episode
 the initial state in each episode
could NOT be fixed (why?)

The Q-learning Algorithm

A
2 4>
A
1 .
A >
0
>
0 1 2 3
: : : Q-VALUES AFTER 10000 EPISODES
00up O1up 02rlght12rlght23rlght32
—> —- —_—> — —>
(0,0)=5 (0.1~ (0.2) =5 (1.2~ > (2.3)- > (32)

. e =0.3
« an example episode

 the initial state in each episode
could NOT be fixed (why?)

The Q-learning Algorithm

A
2 4>
A
1 R
A A
0
>
0 1 2 !

00" 0% 02122 232 5.2)

e =0.3

« an example episode
 the initial state in each episode
could NOT be fixed (why?)

Questions

SARSA

Initialize Q + 0
For all episodes
Initialize s
Choose a using policy derived from @), e.g., e-greedy
Repeat
Take action a, observe r and s’

Choose a’ using policy derived from @, e.g., e-greedy

Update Q(s, a):

Until s is goal state

Alpaydin 2014, Chapter 18

https://mitpress.mit.edu/books/introduction-machine-learning-third-edition

SARSA

SARSA

SARSA

- |

10000 EPISODES

SARSA

