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Learning Scenarios
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Goal State of the Agent

Environment
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Markov Decision Process




Agent & Environment

* The system consists of an agent (may be more) and an environment, interacting with
each other.




States

* From the perspective of the agent, the environment is described by a set of states.

e N

Noof O

States: S ={(¢,4):1=0,1,2,3,7=0,1,2}



Actions

* At each state, the agent can pick and perform certain action to alter the state.

A

0:S x A— §: state transition function

deterministic environment
Action space: A = {up, down, left, right}



Goal State

« No matter starting from which state, the agent would like to achieve certain goal state.

A A A

The game will terminate if the agent arrives at (win) or (lose).

The states (3,2) and (3, 1) are also called absorbing states

In some cases, there is NO goal state. |




Policy

* To achieve the , the agent needs to pick and perform a sequence of actions
according to the observed states.

A A

0 1 2 3 0 1 2 3
A good policy A bad policy

TS > A




The Learning Task

* Finda that can direct the agent to its no matter which state the agent
would have been at the very first beginning.




The Learning Task

How can we find a desired policy to direct the agent’'s move?



Reward

*  We assume that the goal of the agent can be encoded by a reward function
r:SxA—R

The reward function is not always available. For

some applications, you need to define it properly.

« Starting from an arbitrary state, the desired policy would pick for the agent
the actions that maximize the reward accumulated over time.

Looking for a policy that would pick for
the agent the actions to achieve its goals

Looking for a policy to pick for the agent the actions

|
|
|
i starting from an arbitrary state | I
1
|
)
i that will maximize the accumulated reward over time




Reward

*  We assume that the goals of the agent can be encoded by a reward function
A r:SxA—NR

The reward function is not always available. For
some applications, you need to define it properly.
2
1
0
>
0 1 2 3
( .
100, if 6(s,a) = (3,2)
r(s,a) = ¢ —100,if 6(s,a) = (3,1)
0, otherwise




Markov Decision Process (MDP)

Indeed, we have already introduced the so-called MDP, which is defined (rigorously) by

a set of states S, possibly infinite MRT Chapter 14

a set of actions 4, possibly infinite .

an initial state sp € S

a probabilityPr[s’|s, a]: distribution over destination states s = (s, a)
a probability Pr{r|s a} distribution over rewards r’ = r(s, a)

This model is Markovian because the transition and reward probabilities only depend on the
current state and the action picked and performed at the current state, instead of the
previous sequence of states and actions performed.

PI’[St+1 =S |St = s4, Ay = a4, Si—1 = 8¢—1, A1 = ag—1,...,50 = S0, Ag = CLO] — PT[StH = 3/|St = 54, Ay = at:
Pl"[Rt—H = 7“|St = StaAt at, St—1 = S¢— 1>At 1= Qt—1,...,90 = SO,AO = CLO] = Pl"[Rt+1 = 7“|St = StaAt = at]

In this lecture, we assume that
= the states and the actions are finite
= the environment is deterministic, i.e., the destination state and the reward are
completely determined by the current state and the action performed at the current
state


https://cs.nyu.edu/~mohri/mlbook/

The Optimal Policy

Under a MDP, we shall look for the (optimal) policy that leads

to the greatest (expected) accumulated reward no matter
which state the agent begins with.




Accumulated Reward

« Suppose that a policy 7 is given.

« Starting from the tthstep, the cumulative reward by following 7 is given by

Gy = Rip1+vRiyo + V' Riys + ...

f

discounted factor,y € [0, 1)

Qa a
—> T't41 —> T't42
At = W(St) Tt+1 = T(St, Clt) St+1 — (5(875, Cbt)

f f

state transition



Accumulated Reward

« Suppose that a policy 7 is given.

« Starting from the tthstep, the cumulative reward by following 7 is given by

Gy = Rip1+vRiyo + V' Riys + ...

f

discounted factor,y € [0, 1)

I a a H
iSt at St+1 t+1 S St42 t42 i
1 1
] 1
] —> T4 —> 7442 |
At = W(St) Tt+1 = T(St, Clt) St+1 — 5<St, CLt)

state transition



Value Function

« Suppose that a policy 7 is given.

« The value function V™ : § — R is given by

VW(S) — E[Gt\St — 8}

I a a
iSt Qa¢ St+1 t+1 ~ St+2 t+42
1
1
i- —> Tt 1 —> T't12
At = W(St) Tt+1 = T(St, at> St+1 — 5(St, CLt)

state transition



Value Function

A
2
1
0
0 1 2 3
A good policy 71
v = 0.9
V™((0,0)) = 0.9* x 100 = 65.61
V™ ((1,0)) = 0.9° x 100 = 72.9
V7™ ((2,0)) = 0.9° x 100 = 81.0
V7™ ((3,0)) = 0.9° x 100 = 72.9
V7™ ((0,1)) = 0.9° x 100 = 72.9
V™((2,1)) = 0.9 x 100 = 90.0
V7™((0,2)) = 0.9° x 100 = 81.0
V7™ ((1,2)) = 0.9 x 100 = 90.0
V7™ ((2,2)) = 100.0

A bad policy 79

V7™((0,0)) =0

V™((1,0)) = 0.9 x (—100) = —81.0
V™ ((2,0)) = 0.9 x (—100) = —90.0
V™((3,0)) = 0.9% x (—100) = —81
V7™((0,1)) =0

V™ ((2,1)) = —100.0

V™((0,2)) = 0.9 x 100 = 81.0
V™((1,2)) = 0.9 x 100 = 90.0

V™ ((2,2)) = 100.0



Value Function — Bellman Equation

« The value function V™ : § — IR is given by
Vﬂ'( 8) _ E[Gt‘ S, = S} a trajectory

L b

a a i
1 1
1 1
] —> Tt41 — > T't4-2 |
Ay = W(St) T't+1 = T(Sta at) St41 — 5(8157 at)

state transition
* Bellman Equation

V7™(s) =E|Ri+1 +v(Rigo +vRig2+ .. .)
=E[Ri11] + VE|Gt41]
=E[Ri11] + V7 (0(s¢, ar))




Value Function — Bellman Equation

 Bellman Equation

V7i(s) =r(s,a) + V7 (d(s,a))
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Value Function — Bellman Equation

 Bellman Equation

V7i(s) =r(s,a) + V7 (d(s,a))
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Value Function — Bellman Equation

 Bellman Equation

V7i(s) =r(s,a) + V7 (d(s,a))
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Value Function — Bellman Equation

 Bellman Equation

V7i(s) =r(s,a) + V7 (d(s,a))

V=RA4+~TV

]

V=-~T)"'R

A good policy 71



Value Function — Bellman Equation

 Bellman Equation

V7i(s) =r(s,a) + V7 (d(s,a))

invertible?

A good policy 71



Value Function — Bellman Equation

 Bellman Equation

V7i(s) =r(s,a) + V7 (d(s,a))

,r\
9 ’ Theorem: For a finite MDP, Bellman’s equation
I admits a unique solution that is given by
N B V=(I-~T)"'R
0 + The vector R and matrix I’ depend on the policy
>

0 1 2 3
A good policy 71



The Learning Task Revisited

* The learning task for RL scenarios is to learn an optimal policy in the sense that

" = argmax_ V7" (s), Vs.

0 1 2 3 0 1 2 3
A good policy 1 A bad policy 72

 For m and 9, we have

VTi(s) > V™ (s), Vs.

* Indeed, 7 is the optimal policy.



The Q Function

Learning the optimal policy is challenging

An alternative approach to find the optimal policy indirectly is by computing the
state-action value function (Q function)

Q(s;a) =7(s,a) +yV7(d(s,a))

Q(s, a) is the accumulated reward by performing

the action a first and then following the optimal

The definition of the optimal policy implies that
m*(s) = argmax, Q(s,a) = argmax, r(s,a) + YV *(d(s, a))
Notice that
V*(s) = max Q(s,a) = max r(s,a) + YV ((s,a))

Bellman Equations
All together, we have quatl

for the optimal policy

Q(s.a) = r(s,a) + 7 max Q(3(s.a), )




Planning Algorithms




Planning

« Planning: we assume that the agent has perfect knowledge of the environment; thus,
to find the optimal policy, there is no need for the agent to actually perform actions and

interact with the environment (no need to learn)
A

Known

0:S x A— §S: state transition
r:SxA— R :reward



Value Iteration

« Value iteration aims to find the optimal value function by solving the Bellman equations
for the optimal policy

« The key is that the solution to the Bellman equations are indeed a fixed-point, i.e., the
unknowns we want to solve for are on both sides of the Bellman equations

V*(s) = max Q(s,a) = max r(s,a)+~yV*(d(s,a))

Initialize V(s) to arbitrary values

while termination conditions does not hold
For s € S

For ac A
Q(s,a) < r(s,a) +vV(d(s,a))
V(s) < max Q(s,a)



Value Iteration

« Value iteration aims to find the optimal value function and thus the optimal policy

A
Example
9 V0
Q((0,0),up) < 0+ 0.9 x V((0,1)) =0
| SRR m Q((0,0),down) «+ 0+ 0.9 x V((0,0)) =
S Q((0,0),1eft) « 0+ 0.9 x V((0,0)) = 0
- Q((0,0),right) <~ 0+ 0.9 x V((1,0)) =
0 - N V((0,0)) <+ max{Q((0,0),up), Q((0,0), ovvn) Q((0,0),left), Q((0,0),right)} =0




Value lteration

« Value iteration aims to find the optimal value function and thus the optimal policy

[ Example
2 V<0
" Q((0,0),up) < 0+ 0.9 x V((0,1)) =0
1 Q((0,0),down) < 0+ 0.9 x V((0,0)) =
Q((0,0),left) < 0+ 0.9 x V((0,0)) = 0
= Q((0,0), right) < 0 4 0.9 x V((1,0)) =
: A S V((0,0)) <= max{Q((0,0),up), Q((0,0), own) Q((0,0),left), Q((0,0), right)} = 0

Nothing happens



Value Iteration

« Value iteration aims to find the optimal value function and thus the optimal policy

A
Example
2 ) V<0
— Q((2,2),up) « 0+ 0.9 x V((2,2)) =0

1 ; Q((2,2),down) + 0+ 0.9 x V((2,1)) = 0

- Q((2,2),left) + 0+ 0.9 x V((1,2)) =0
0 Q((2,2),right) < 100 + 0.9 x V((3,2)) = 100

S V((2,2) + max{Q((2,2),up), Q((2,2),down), Q((2,2), left), Q((2,2), right)} = 100




Value Iteration

« Value iteration aims to find the optimal value function and thus the optimal policy

* The key to the proof is the contraction mapping theorem



Policy Iteration

Policy iteration improves the policy directly

Initialize 7, 7’ to two different policies
while(r # ')
Ve (I—~T")'R™
'
For s € S
7(s) < argmax, r(s,a) + vV ((s,a))



Policy Iteration

* Policy iteration improves the policy directly

| | Initialize m < mo, ™ # mo
2 while(w # 7')
e . 10V (I AT R
7
0 N For s S
0 1 2 3 m(s) < argmax, r(s,a) + vV (d(s,a))

A bad policy 72



Policy Iteration

Policy iteration improves the policy directly

| - 15t iteration

V’T('

A bad policy 72
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Policy Iteration

Policy iteration improves the policy directly
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Policy Iteration

Policy iteration improves the policy directly
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Policy Iteration

* Policy iteration improves the policy directly

15t jteration

4 Vi (I—~T")'R™ =

A bad policy 72
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Policy Iteration

* Policy iteration improves the policy directly

15t iteration: update the policy
: 7((0,0)) = argmax, {r((0,0), up) +V((0, 1)),
| r((0,0),down) + vV ((0,0)),
r((0,0),left) + vV ((0,0)),
: , r((0,0), right) +7V((1,0))}
0 ! 2 3 = argmax,_{0,0,0,0}

A bad policy 72

We can randomly select one action from A = {up, down, left, right}.
However, it is better select one action from up and right (why?).



Policy Iteration

» Policy iteration improves the policy directly

15t jteration: update the policy
: 7((0,0)) = argmax, {r((0,0), up) +V((0, 1)),
| r((0,0),down) + vV ((0,0)),
r((0,0),left) + vV ((0,0)),
: , r((0,0), right) +7V((1,0))}
0 ! 2 3 = argmax,_{0,0,0,0}

A bad policy 72
We can indeed assign negative rewards for actions that will not
alter the states when these states are not the goal states. Or, we
can simply ignore these actions.



Policy Iteration

* Policy iteration improves the policy directly

A bad policy 72

15t iteration: update the policy

m((0,0)) = up
7((1,0)) = right
7((2,0)) = right
7((3,0)) = left
m((0,1)) = up
7((2,1)) = up
7((3,1)) = END
7((0,2)) = right
7((1,2)) = right
7((2,2)) = right
7((3,2)) = END



Learning Algorithms




Learning

« Learning: as the environment model, i.e., the transition and . IS unknown, the
agent may need to learn them based on the training information.

A

0 1 2 3

Unknown

0:S x A— §S: state transition
r:SxA— R :reward



Learning

* Learning: as the environment model, i.e., the transition and reward, is unknown, the
agent may need to learn them based on the training information.

* Model-free approach: the agent learns the optimal policy directly, e.g., Q-learning

* Model-based approach: the agent first learns the environment model and then the
optimal policy

Examples of training data

up right right right
(0, 0)—>(0 N 0.2) =5 1.2~ (2 3)—>O(3 2)

(1,0>”% (2,0>“F(’) e @)
-100




The Q-learning Algorithm

» Initialize the matrix () to zero

* Observe the current state s

* Do forever:
* Pick and perform an action a
* Receive immediate reward r
« Observe the new state s’
« Update

Q(s,a) < r+ Y max Q(s',a")
a
« s5¢ &

A sufficient condition for Q(s, a) to converge is to visit each state-action pair infinitely often



The Q-learning Algorithm

» Initialize the matrix () to zero

* Observe the current state s

* Do forever: —
* Pick and perform an action a
* Receive immediate reward r
« Observe the new state s’
« Update

Q(s,a) < r+ Y max Q(s',a")
a
« s5¢ &



Exploitation vs Exploration

*  Multi-armed bandit

Bandit 1 Bandit 2 Bandit 3 Bandit 4 Bandit 5

*  Which machine next?
- Exploitation: the machine with the largest reward at present
- Exploration: randomly select a machine



Exploitation vs Exploration

*  Multi-armed bandit

Bandit 1 Bandit 2 Bandit 3 Bandit 4 Bandit 5

* e-greedy

with probability 1 — €, we do exploitation
with probability €, we do exploration, i.e., we uniformly randomly select
an action from all possible actions

« Tips for e-greedy

At the beginning, the agent does not know the environment very well.
Thus, it need to do more exploration and a large value of € is needed.
When the environment model is well explored, the agent can do more
exploitation. Thus, we favor a small value of €.



Exploitation vs Exploration

*  Multi-armed bandit
Bandit 1 Bandit 2 Bandit 3 Bandit 4 Bandit 5

« A soft sampling strategy
- Given a state, we can choose action probabilistically

eQ(s,0)/T
Pla|s] =

Y L eQsa)T
a

- Smaller values of T will assign higher probabilities for actions with high
0, leading to an exploitation strategy.

- Larger values of T" will encourage the agent to explore actions that do
not currently have high Q values.



The Q-learning Algorithm

00" 0% 02122 232 5.2)

e =0.3

« an example episode
 the initial state in each episode
should NOT be fixed (why?)



The Q-learning Algorithm

00" 0% 02122 232 5.2)

<« — — “— —
e =0.3



Questions




SARSA

Initialize Q < 0
For all episodes
Initialize s
Choose a using policy derived from (), e.g., e-greedy

Repeat Look one step further

than Q-learning

Take action a, observe r and s’

Choose a’ using policy derived from @, e.g., e-greedy
Update Q(s, a):

s+ s, a+ad

Until s is goal state

Alpaydin 2014, Chapter 18



https://mitpress.mit.edu/books/introduction-machine-learning-third-edition

SARSA




