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1 Preliminary

1.1 Singular Value Decomposition
Definition 1. A set of vectors {v;}"_, in R? are called orthonormal if

(Vi vj) = {1’ =3,

0, otherwise.
A matrix M € R%4 is orthogonal if
M'M=1I,
where I € R%? is the identity matrix.

Theorem 1. Given a matric A € R™*". Suppose that rank(A) = r. Then, there exists n right
singular vectors vi, ..., vy, that are orthonormal in R™, and m left singular vectors uy, ..., u,, that
are orthonormal in R™, such that

AVZ‘ =0o;U;, 1= 1,...,7", (1)
Av; =0,i=r+1,...,n, (2)
where o1 > 09 > ... > o, > 0 are the r positive singular values.
Remark 1.
1. The last n — r right singular vectors v;, i = r + 1,...,n, span the null space of A. The last
m — r left singular vectors u;, i = r + 1,...,m, span the null space of A.
2. Let V=(vi,...,Vp,...,vp), U= (u1,...,up,...,uy), and
cp 0 --- 0 0 ... O
0 o0 -+ 0 0 ... O
=10 0 or 0O 0
0 0 0 0 0
0 0 0 0 0

We can write Eq. (1) as
AV =UX.

3. The singular value decomposition of A is

A=UxV".
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4. Recall that, if A= BCD', where B € R™*P, C' € RP*9, and D € R™ 9, then we can write A

as the sum of a set of rank 1 matrix

A= Z C@jbid;r,

i=1 j=1

where b; and d; are the ith and j*" column vectors of B and D, respectively.

Therefore, by the singular value decomposition, we can write A as a sum of r rank 1 matrix:

A=UxVT = Jlulvir + O'QUQV; + ...+ aruTV:.

5. Let V. = (v1,va,...,v;), U = (ug,us,...,u,), and
op 0
0 g9
X = .
0 0

The reduced form of the SVD of A is

A=U% V'
1.2 Random Vectors
A random vector X takes the form of
Xi
X = :
Xy
The mean of X is
1 E(X1)
Hd E(Xq)

The covariance matrix X, also written as V(X), is

V(Xl) COV(Xl,XQ)
COV(XQ,Xl) V(XQ)

COV(Xd, Xl) COV(Xd, X2)

Suppose that we randomly sample n data instances:

0
0
3)
COV(Xl, Xd)
COV(XQ, Xd)
V(X,)
,n (4)
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The sample mean is

1 n
=1
Clearly,

1 n
=1

The sample variance matrix S € R%*¢ is

S1,1 81,2 S1d
$2,1 S22 -+ S2d

S = . . . . 3
Sd,1 Sd2 " Sdd

where
1 n
Sjik = 7 z;(fw — Zj) (@i — Tk)-
—

By simple algebraic manipulation, we can see that

5= ! SR -®)T = XX (5)
=1

where X € R and its ™" column is x; — x.

2 Principal Component Analysis

The core idea of PCA is that, we would like to project the data instances into a subspace such
that the set of projected data instances preserves as much information as possible.

2.1 The formulation

Suppose that we have a set of data instances x; € R% i =1,...,n. Let gz e R:, k= 1,..., K,
with K < d, be a set of orthonormal vectors such that

8180 = 0, otherwise,
and
G: (gla”'ugK)-

Then, the projection of the x; into the subspace spanned by {gi, ..., gk}, that is, the column space
of G, is

z; = Pg(Xi) = GGTXI'. (6)




MIRMA Lecture 16. Principal Component Analysis

We use the sample variance to measure the information carried by the data instances. Thus, the
information preserved by the projected data instances is

where

By plugging Eq. (6) into Eq. (7), we have

7= %Z éGGTxi =GGT <:L Z:x> = GG %,
where

Z

3\'—‘

Thus, the problem becomes

T T2
L Z |GG x; — GG x]|7, (8)
st.GTG=1.

Notice that
1 - T _ TL2 — 1 - Tiv. _ % T _ %
n_liZ;HGG xi — GG x|? =—— ;:leG (xi — %),GG (x; — X))

1 n
= Y (xi—%)'GGTGGT (x; - )
=1
1 n
=— D (xi—%)TGGT (x; — %)
=1

n—lztr< i — %) GG T (x —i))

<GT(xi — %) (x; — x)TG)

Thus, the problem in (8) becomes

tr(G' SG 9
_max (G SG), ©

st.GTG=1.
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Question 1. Consider the problem in (9).
1. Does the problem always admit a solution?

2. If the problem admit a solution, is it unique?

2.2  Solution to problem (9)
Recall from Eq. (5) that

S =

We denote the SVD of X by
X=Uuxv",
where U € R¥™*4 ¥ € R¥™*" and V € R™*",

Assumption 1. For simplicity, we assume that o1 > o9 > -+ > 0.

Thus,
1

where ¥2 = ©¥ 7. Plugging Eq. (10) into the problem in (9) leads to

Ggﬂéadi(K tr(GTUXAUTG), (11)
st.GTG=1.
Denote
Q=U'G. (12)
We can see that Q € RX and
QIQ=1
Thus, the problem in (11) reduces to
28, tr(Q'23Q), (13)
st.Q'Q=1.

We can see that

Notice that
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is the square of the £5 norm of the i*" row of the matrix Q. Denote

K
o = quk (15)
k=1
We can see that
a; €0,1],i=1,...,d,
d d K K d K
D= D ak=) ) ax=) 1=K
=1 =1 k=1 k=1 1=1 k=1

Thus, we can further transform the problem (13) to

d

§ : 2
max ;07 16
acRd i— e ( )

stoa; €[0,1],i=1,...,d,
d
Zai =K.
i=1

We can solve the above problem by the Lagrange multiplier method. However, we provide an
alternative approach. Let

d
fla) = Z ol
i=1

Recall that we arrange the singular values in decending order, that is,

o1 >09>...>04>0.

As Zle a; = K, we have

d K
E o = K — E (078
i=K+1 i=1
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Thus, for any « that is feasible with respect to problem (16)

K d
fla) = Zaiag + Z e
i=1

i=K+1
K d
< L2 ) 2
S Q;0; + (673 O-K+1
=1 i=K+1

K K

:Zam? + (K— Zaz) U%(_H
i=1 i=1
K K

= Zam? + (Z(l - ozi)> Ok i1
i=1

i=1
K K
< Z ol + Z(l — ;)0;
i=1 i=1
K
S
i=1
= a*)7
where o* = (of, ..., ) with
Li=1,... K,
S (1)
0,i=K+1,...,d.

Moreover, it is easy to see that o is feasible. Thus, the vector a* is the optimal solution to problem
(16).
We denote the optimal solution to problem (13) by

Q" =(aj;---,ax)-

In view of Eq. (15) and Eq. (17), we can see that the last d — K entries of q; are 0 for all

j=1,..., K, that is
L (@
o=(7) .
0d><K

@* c REXK ond (@*)T@* — I

where

Thus, by Eq. (12), we have

G =UQ" = UkQ", (18)
where

Uk = (u,...,ux).

That is, the optimal solution G* to problem (9) is the matrix which shares the same column
subspace spanned by the K left singular vectors of X corresponding to its first K largest singular
values.
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2.3 Principal components

Notice that, @* in Eq. (18) is an arbitrary K x K orthogonal matrix. Although G* is a solution
to problem (9) for any orthogonal matrix QV*, the column vectors are not necessarily the so-called
principal component vectors of the sampled data {x;}7 ;.

The column vectors of G* are the principal component vectors of the data {x;}7"; only if @* =1,
that is

G* = (uy,...,ug),

and {u; }JK:1 are the first K Principal component vectors.

Remark 2. Commonly seen approach to derive the principal component vectors is to first set
K =1 and solve the problem in (9). By the same approach in the last section, we can get the first
principal component vector as u;. Then, we fix u; and solve the problem in (9) by setting K = 2.
We can get the second Principal component vector uy. Repeating this procedure, we can get the
first K principal component vectors.
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