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1 Introduction

Many popular ML models involve nondifferentiable objective functions, e.g., Lasso introduced as a
special case of weighted least squares models. We generalize the concept of gradient for differentiable
functions to the so-called subgradient for nondifferentiable convex functions.

2 Subgradients and Subdifferentials

Definition 1. A function f: R® — R (R := R U {00, —oo}) is called proper if
1. dx € R™, such that f(x) < oo;
2. f(x) > —o0, Vx € R™.

Definition 2. Let f : R® — R be a proper convex function and let x € dom f. A vector g € R”
such that

fy) > f(x) +(gy —x),Vy € R" (1)

is called a subgradient of f at x.

Figure 1: A subgradient.

Question 1. In Definition 2, shall we ask y € dom f?
Remark 1. In view of Definition 2, the subgradient is defined for convex functions.

Example 1. Consider function f(z) = |z|, x € R. Find the subgradient of f at 0.
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Solution: Let g € f(0). Then
fy) =1yl = f(0) +9(y = 0) = gy.
Clearly, the above inequality holds for all y € R if and only if g € [—1,1]. Thus, we have
9f(0) = [-1,1],

which is not unique. u

Remark 2 (A geometric interpretation of subdifferential). Inspired by Fig. 1, we can link
the subgradient of f to its epigraph. Indeed, for any (y,t) € epi f, we have

t=>fly) = f(x) +(gy—x),

()0~ () =0 @

The inequality (2) is the variational inequality characterizing the projection of a point lying on
the ray with base (x, f(x)) and direction (g, —1) onto the set epi f.

Furthermore, Fig. 1 implies that the vector (g, —1) € R"*! determines a hyperplane supporting
epi f at the point (x, f(x)). Can you find the expression of this hyperplane?

which can be rewritten as

Definition 3. The set of all subgradients of f at x is called the subdifferential of f at x and is
denoted by 0f(x).

Theorem 1. Let f : R" — R be conver and x € int (dom f). Then, f is locally Lipschitz
continuous at X, that is, 3 € > 0 and M > 0 such that

1f(y) = F) < Mlly = x|, V{y : ly — x| < €}
Remark 3. The value of the parameter M in Theorem 1 may depend on x.
Theorem 2. [1] Let f: R™ — R be convex and let x € int (dom f). Then
1. the subdifferential 0f(x) is a nonempty, bounded, closed, and conver set;

2. for any v € R™, we have

Vo i d (V) — f(x)
fxv) = 1%1 " = ger%fﬁcx)w, g),

where f'(x;v) is the directional derivative of f at x along the direction v;
3. if f is differentiable at x, then 0f(x) = {Vf(x)}.
Proof.

1. We first show that 0f(x) is nonempty. The working horse is the supporting hyperplane
theorem.
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As the point (x, f(x)) is a boundary point of epi f, the supporting hyperplane theorem
implies that we can separate (x, f(x)) and epi f by a hyperplane. That is, there exists a
(d,a) € R" and (d,«) # 0 such that

((d,a),(y,t)) <((d,a),(x, f(x))), V(y,t) € epi f,
which can be rewritten as
(d,y) + at <(d,x) + af(x), V(y,t) € epi f. (3)

As the inequality (3) holds for all (y,t) € epi f, we conclude o« < 0. We further claim that
a # 0. Suppose not, that is, @ = 0 (and thus d # 0), the inequality (3) becomes

(d,y—x>§(),V(y,t)Eepif. (4)

As x € int (dom f), there exists a small number e > 0 such that x+ed € dom f. Replacing
y in (4) by x+ ed leads to d = 0, which is a contradiction. Thus, we must have a < 0. Then,
by replacing ¢ by f(y) in (3) and dividing both sides by «, we have

f(Y) = f(X) + <—d/Oé,y - X>7 VY7
which implies that —d/a € 0f(x). Therefore, the set 0f(x) is nonempty.
We next show the boundedness of 9f(x). As x € int (dom f), we can find a a small number

€1 > 0 such that {y : |ly — x|| < e1} € dom f. Moreover, by Theorem 1, we can find an
€2 > 0 and M > 0 such that V||y — x|| < ez, we have

1f(y) = f(x)| < Mlly —x]|.
Let € = min{e;, e2}. For any g € df(x) and g # 0, we choose
x' =x+eg/|lgll;
which leads to
cllgll = (g, x" —x) < f(x) — f(x) < M|x"—x|| = Me.
Thus, 0f(x) is bounded.
The closedness and convexity of 0f(x) can be seen from its definition that, it is the
intersection of a set of closed half-spaces.
2. We omit the proof here.
3. For any v € R" and g € df(x), we have
(Vx),v) = f'(x;v) > (g, V).
Changing the sign of v, we conclude that
(Vf(x),v) = (g V).
By letting v =ex, k =1,...,n, we have g = V f(x).
O

Question 2. Consider Theorem 2. The condition that x € int (dom f) is fundamentally important
in deriving the conclusions.

1. If x € dom f but it is not an interior point of dom f, is it possible that df(x) = (?

2. If x € relint (dom f), is it possible that df(x) is unbounded?
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3 Subdifferential Calculus

Lemma 1. [2] Suppose that f : R™ — R is a convex function. For a > 0, let h(x) = af(x). Then,
h is convez, and Oh(x) = adf(x) for every x.

Proof. We show the result directly from the definition. Indeed, g € df(x) if and only if for all y
My) = af(y) = alf(x) + (g8, y —x)] = h(x) + {ag,y — x),
which implies that ag € Oh(x). O

Lemma 2. [2] Suppose that f : R™ — R is a convex function, A € R™" and b € R™. Let
h(x) = f(Ax +b). Then, for any x, we have

Oh(x) = ATOf(Ax +b).

Proof. We show the result directly from the definition. Indeed, we have g € df(Ax + b) if and
only if

h(y) = f(Ay +b) > f(Ax +b) + (g, Ay — Ax) = h(x) + (A" g,y — %),
which implies that ATg € dh(x). O

Theorem 3 (Moreau-Rockafellar Theorem). [2] Assume that f = fi + fo, where fi : R® — R,
i =1,2, are convex proper functions. If there exists a point xo € dom f such that f1 is continuous
at xq, then

Of (x) = 0f1(x) + 0f2(x), Vx € dom f.
Definition 4. A convex function is called closed if its epigraph is a closed set.

Lemma 3. [1] Let functions fi(x), i =1,...,m, be closed and convex. Then function

f(x) = max. fi(x)

is also closed and convex. For any x € int (dom f) = N, int (dom f;), we have
DF(x) = conv {9f(x) 1 i € A*(x)},

where A*(x) = {i : fi(x) = f(x)}.

Example 2. Consider function f(x) = |z|, z € R. Find 0f(z).

Solution:  Clearly, f(x) is a convex function. We find df(x) by two different approaches.

1. We have derived that 0f(0) = [—1,1]. Moreover, by noting that f(z) is differentiable for
x # 0, we have
1, if x >0,
of(z) =4 [-1,1], if 2 =0,
-1, if x < 0.

2. Let fi(z) = x and fa(x) = —z. Clearly, we have dfi(x) = {Vfi(x)} = {1}, and similarly
6f2($) = {—1}.
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Moreover, it is easy to see that f(x) = max{fi(z), f2(z)}, and thus

Of(x) =conv{0fi(x): fi(x) = f(z)}

1, if z >0,
=4 [-1,1], if 2 =0,
-1, ifx <0.

Example 3. Let f(x) = [x|[1, where x € R". Find 0f(x).

Solution: It is easy to see that f(x) is a convex function. We find 0f(x) by two different
approaches.

1. By Lemma 2 and Theorem 3, we have

n n
-
F) = lxli=) |zl =) lef x|
i=1 i=1

=0f(x) =10 (i ]ejx) = i:@]e;—rx\ = zn:el-@\xi\
i=1 i=1 i=1

1, if x; > 0,
=qveR" vy, =¢[-1,1], ifz; =0,
—1, if z; < 0.

2. We first write f(x) as the supreme of a set of linear functions, that is,
fx) = x| = Z |z;] = max {(s,x) : s € R",|s;| = 1,Vi}.
i=1

Let fs(x) = (s,x) and A ={s e R": |s;] =1,i=1,...,n}. Then,
f(x) = |Ix]j1 = max{fs(x) : s € A}.

Clearly, the function fs(x) is continuously differentiable and V fs(x) = s. Let
A*(x) ={s:s €A, fs(x) = ||x] }

Clearly, for any x, if s € A*(x), then s takes the form of

1, ifx; >0,
S = il, if Ty = 0,
-1, if z; < 0.
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Then, by Lemma 3, we have

df(x) =conv{s:s e A*(x)}
1, if z; > 0,
= vGR”:vi: [—1,1],ifaci:0,
—1, if.CL‘Z' < 0.
[ |

Example 4. Let f : R” — R be defined by f(x) = max{z;,i = 1,...,n}, where z; is the i
component of x.

Solution:  To see that f(x) is convex, it suffices to note that

flx) = max (ei, x).

Let fi(x) = (e;,x) and A = {1,2,...,n}. Clearly, Vf;(x) = e;. Let

A*(x) = argmax f;(x).

i=1,...,n
Thus, by Lemma 3, we have
Of(x) =conv{e;:ic A*"(x)} ={v:veR} |v|]i=1v=0,i¢ A"(x)}.
|

Lemma 4. Let ¢(y,x) be a continuous function with respect to'y and x, A a compact set and
o(y,x) is closed and convez in x for any fired'y € A. Then,

f(x) =sup{e(y,x) : y € A}
is closed and conver. For any x from
dom f = {x € R": f(x) < oo},
we have
9f(x) = conv {J¢x(y,x) 1 y € A% (x)},

where A*(x) = {y : ¢(y, %) = f(x)}.
Example 5. Let f : R™ — R be the Euclidean norm f(x) = ||x]|.

Solution: It is clear that f(x) is convex, and we can write f(x) as

f(x) = max{(g,x) : |[g]| = 1}.

When x # 0, we can see that

argmax{(g,x) : |g]| = 1} = {”iu}
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only contains one element. This implies that f(x) is differentiable at x # 0. We are pretty familiar
with this fact from calculus.
When x = 0, we can see that

argmax{(g,x) : g =1} = {g: [|g| = 1}.

Thus, by Lemma 4, we have

9f(0) = conv{g: g| =1} ={g: llgll < 1}.
All together, we have

X

ITHETR) O,
Of(x) = Il x 7
{g: gl <1}, x=0.

Example 6. Let f:S™ — R be defined by f(X) = Amax(X). Find 0f(X).

Solution:  From the last lecture, we have shown that f(X) is a convex function. By eigen-
decomposition, a symmetric matrix can be written as

X =UAU"T,

where UTU =T and A = diag (A1,...,\,) with Ay > --- > \,. Let U = (uy,...,u,), i.e., u; is the
eigenvector corresponding to A;. We then write f(X) as the maximum of a set of linear functions
over X:

F(X) = max {(s, Xs) : [Is]| = 1} = max {{ss ", X) : [|s]| = 1},
where
(X,)Y) = tI’(XTY) = in’jyi’j
1,J
denotes the inner product of two matrices X and Y. Let fs(X) = {(ss', X) and A = {s : ||s|| = 1}.

Clearly, the function fs(x) is continuously differentiable and V fs(x) = ss'. Then,

Of(X)=conv{ss' :se€ A, f(X)=(ss',X)=f(X)}.

Next, let us find out which s from A makes fs(X) = f(X) holds. Assume that Apax = A1 =
-+ = Ap, where 1 <r < n. We can see that

u; € argmax(ssT,X>, i=1,...,7
lIsl=1

Let U" = (uy,...,u;). Then,

A*(X) :=argmax(ss',X)={v:vespan U",|v]| =1} ={v:v=U"q,q € R",||q|| = 1}.
s€eA
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By Lemma 4, we have

0f(X) =conv {vvT 1V E A*(X)}
=conv{U"qq' (U")" : q € R",||q|| = 1}
={U"GU")" : G = 0,tx(G) = 1}.
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