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1 Introduction

An optimization problem is convex if both its objective function and problem domain are convex.
We have seen convex sets last lecture. In this lecture, we will focus on convex functions. The major
references of this lecture are [1, 2, 3].

2 Definitions

Definition 1. A function f : R™ — R is convex if dom f is a convex set, and if for all x,y €
dom f, and 6 € [0,1], we have

flox+ (1 —0)y) <0f(x)+(1-0)f(y) (1)

(v, f())

(z, f(2))

Figure 1: Convex function.

Question 1. What can we say about the continuity and differentiability of convex functions
in view of Definition 17

Definition 2. We have several variants of convexity.
e A function f is strictly convex if strict inequality in Eq. (1) holds whenever x # y and
6 € (0,1).
e A function f is strongly convex with parameter 1 > 0 if f — £||x]|3 is convex.

e A function f is concave if —f is convex, strictly concave if —f is strictly convex, and
strongly concave if —f is strongly convex.

Example 1. We give a few commonly seen examples of convex functions.

1. Affine function: f(x) =a'x+b, where a # 0 and b € R.
2. Norms. Every norm on R™ and R"*".
3. Negative entropy: f(x) = xlogx is convex on R, .
Definition 3 (Sublevel sets). The a-sublevel set of a function f : R™ — R is defined as
Co={r €dom f: f(x) < a}.

Proposition 1. Sublevel sets of a convex function are convex, for any value of c.
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3 Epigraph of a Function

We next provide another definition of the convexity of functions, which bridges the convexity of
functions and that of sets.

Definition 4. The epigraph of a function f : R” — R is defined by
epi f = {(x,t) : x € dom f, f(x) < t},
which is a subset of R™+1,
Epi means above, and thus epigraph means above the graph.
Theorem 1. A function is convex if and only of its epigraph is a convex set.

Proof. = Suppose that f is convex, and (x,t) and (y, s) belong to epi f (of course, x,y € dom f).
To show that epi f is convex, it suffices to show that the line segment joining (x,t) and (y,s)
belongs to epi f, which is equivalent to

fx+(1—-0)y) <0t+(1—-0)s,V6e]|0,1].
This can be seen easily from the convexity of f:
Flox+ (1= 0)y) < 0£(x) + (1 0)f(y) < 0t + (1= 0)s,

as f(x) <tand f(y) < s by the definition of epigraph.
< Suppose that epi f is convex. Consider (x, f(x)) and (y, f(y)). Clearly, we have (x, f(x)), (y, f(y)) €
epi f. As epi f is convex, the line segment joining (x, f(x)) and (y, f(y)) belongs to epi f, i.e.,

(0x+ (1 —0)y,0f(x)+ (1 —0)f(y)) € epi f.
The convexity of f follows immediately by the definition of epi f. O
Theorem 1 is useful to tell the convexity of functions for some seemingly complicated cases.

Lemma 1. If f is a convex function, then for all x1,X2,...,X; and all nonnegative oy, 1 =
1,2,...,m, such that Y ;" | am = 1, we have

f (Z aixm> <) aif(x).
i=1 i=1

Proof. We can see that, the points

<fzz)>,z‘:1,2,...,m,

belong to the epigraph of f. As f is a convex function, its epigraph epi f is convex. Thus, any
convex combination of the points (x;, f(x;)) ", i = 1,2,...,m, belong to epi f, which leads to the
claim immediately. O

Theorem 2. A function f : R" is convez if and only if dom f is convex and its restriction to any
line intersecting its domain is convex. By restriction to a line we mean that, for any xg € dom f
and v € R", the function

g(t) = f(XO + tV),

is convex over its domain dom g = {t : xo + tv € dom f}.
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4 Smooth Convex Functions

4.1 First-order conditions

Theorem 3. Suppose that f is continuously differentiable. Then, f is convex if and only if dom f
is convex and

fy) > f(x) + (Vf(x),y —x) ,Vx,y € dom f.
N—

directional derivative

Proof. = The convexity of f implies that, V60 € (0, 1), we have

fx+0(y —x)) < f(x) +0(f(y) — f(x))
This leads to
fx+0y —x)) — f(x)

f(y) = f(%) Zleiﬁ]l 5 =(Vf(x),y —x).

< Let z = 60x + (1 — 0)y. Then,
fx) = f(2) + (Vf(z),x—z), f(y)=[f(2)+(V[(z),y—2)
Multiplying the first inequality by 6, the second by 1 — 6, and adding them together lead to

0f(x)+(1—=0)f(y) =0f(z) + (1 -0)f(z) +(V[f(z),x—2z)+ (1 -0)(V[f(2).y —2z)
= f(z) + (V[f(2),0(x —2) + (1 -0)(y — z))

) +(Vf(z),0x+ (1 - 0)y —z)

) +(Vf(z),z—2)

Ox+ (1 —0)y),

= f(z
= f(z
= f(

which implies that f is convex. This completes the proof. ]

Theorem 4. Suppose that f is continuously differentiable. Then, f is convex if and only if dom f
1§ conver and

(Vf(x)=Vf(y),x—y)>0,Yx,y € dom f.
Proof. = The convexity of f implies that

fy) 2 fx) +(VIix),y —x), f(x)=f(y) +(VI(y),x—y)
Adding them together leads to desired result.

 Let x; = x + t(y — x) and g(t) = f(x;). Then,
1) =00 =50) + [ g0
=169+ | (T F G+ tly — ),y — X
=169+ | (VS tly — ) — VG + VAG,y - xde

11
=00+ (VF0xy =) + [ V) = V). %0 = )i

g

>0

2f(x) +(Vf(x),y —x).
The proof is complete. O]
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Example 2. Consider the function f : R™ — R defined as the quadratic form

f(x) = (x, A%),

where A € S™ is a symmetric matrix. Then, f is convex if and only if A is a positive semidefinite
matrix, and strictly convex if and only if A is a positive definite matrix.
Clearly, we can see that dom f = R™ is convex. Moreover, as

Vf(x)=2Ax,
we have

fy) = f(x) = (Vf(x),y —x) =(y, Ay) — (x, Ax) — 2(4Ax,y — %)
=(y, Ay) + (x, Ax) — 2(Ax,y)
=y —x, Ay — x)).

4.2 Second-order conditions

Theorem 5. Suppose that f is twice continuously differentiable. Then, f is convex if and only if
dom f is convex and V?f(x) = 0, for all x € dom f.

Proof. = Suppose that f is convex. For an arbitrary point x € dom f, let s € R" be a vector and

x; = X + ts such that x, € dom f for t € [0,1]. Then,

0<

(VF(x0) = V()0 %) = 1 {Vf(x0) — VI (x),9) 2)

= </0t VQf(x+7's)sd7',s>

—lt 2f(x+T T
= /O(V f(x+ 78)s,s)dT.

t

By the mean value theorem, we can find an « € (0,¢) such that
t
/ (V2f(x + 18)s,s)dr = t(V2f(x + as)s, s). (3)
0

Plugging Eq. (3) into the inequality in (2) leads to
0 < (V3f(x+ as)s,s).
As the above inequality holds for any ¢ > 0 and « € (0,1), letting ¢ | 0 yields
0 < (V2f(x)s,3).

We further note that s is an arbitrary vector. Thus, the Hessian V2 f(x) must be positive semi-
definite, i.e., V2f(x) = 0.

< Suppose that V2f(x) = 0, for all x € dom f. Let y € dom f and g(t) = f(x + t(y — x)).
Then,

g'(t) =(Vf(x+tly —x)),y — x),
g"(t) =(V’f(x + t(y — x))(y — ),y — x).
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Clearly, we can see that ¢”(t) > 0 for any ¢ € [0, 1]. The fundamental theorem of calculus yields

o) =00)+ [ gt =)+ [ [¢0)+ [ o'rrar]a

=9(0) + ¢'(0) + /01 [/Otg"(T)dT] dt.

By noting that the third term on the RHS is nonnegative as the integrand is nonnegative, we have
g9(1) = 9(0) + 4'(0),
which is equivalent to
fy) =2 f(x) +(Vf(x),y —x).
By Theorem 3, we can see that f is convex. O
Example 3. The log-determinant function
f(X)=—logdet X

is convex with dom f =87, .
To see this, let Xo € S’ and V € S". We define

g(t) = f(Xo +tV)
with dom g = {t: Xo +tV € ST, }. Thus
g(t) = —logdet(Xo + tV)
= —logdet(X)2(I +tx; PV Xy *) X))

=— Z log(1 + tA;) — log det Xy,

i=1
. —-1/2 —-1/2
where A1, ..., \, are the eigenvalues of X; "V X, '". Therefore, we have
n n
i A2
/t — _ 1 iz t) = 71'
g (t) Zlﬂ/\i, g (t) Z(1+t)\i)2

i=1 =1

As ¢"(t) > 0, we conclude that f is convex.

4.3 Extended-value extensions

Definition 5. If f is convex, we define its extended-value extension f :R" —» RU {oo0, —o0} by

. Jf(x), x&dom f,
J) = {oo, x ¢ dom f.

Example 4. Let C C R"™ be a convex set. Its indicator function Ic : C — R is zero for all x € C.
The extended-value extension of I is

~ 0, xeC,
IC(X):{OO e

Remark 1. The inequality in (1) holds for I for all 2,y € R™.
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5 Operations that Preserve Convexity

Proposition 2. Let f: R™ — (—o0, 00| be a given function, let A € R™*™ and b € R™, and let
F(x) = f(Ax +b), z € R".

If f is convex, then F' is also convex.

Proposition 3. Let f; : R" — (—o00,00], 1 = 1,...,m, be given functions, let wy, ..., wy, be positive
salars, and

f(x) =wi fi(x) 4+ + wn fm(x), x € R™.
If f1,..., fm are convex, then f is also conver.

Proposition 4. Let f; : R™ — (—o0, 0] be given functions for i € I, where I is an arbitrary index
set, and

f(x) =sup fi(x).

el
If f;, 1 € I, are convex, then f is also convex.

Example 5. The weighted least squares
1
h(w) = —lly - Xwlf* +AQ(w),

where Q(w) = |[|[w||% or Q(w) = ||w]|1, is convex for all A > 0.

Example 6. For x € R", let z};) be the ith largest component of x. Then, the function

r
Fx) = ay,
i=1
is convex.
Example 7. For A € S", its largest eigenvalue
f(A) = Amax(A)
is a convex function with respect to A, as

A) = max (v, Av
f(4) ”V”a:l<, )

and (v, Av) is linear with respect to A for all v.
Example 8. For a nonempty set C' C R", the support function of C' is defined as
fe(v) = sup{(v,x) : x € C}

with its domain dom fo = {v: fo(v) < co}. The support function is convex.
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