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1 Introduction

Recall the example we introduced last lecture as follows.

Example 1. Suppose p : R — R satisfies p(x) > 0 for all x € C and fcp(x)dx = 1, where
C C R"™ is convex. Then

/ p(x)xdx € C,
C

if the integral exists.

How to show the claim in Example 1 rigorously? In this lecture, we introduce a suite of powerful
tools in convex analysis, called separation theorems.

2 Projection

Consider a closed convex set C C R™ and a point x € R™. If there is a point z € C that is closest
to x, we call z the projection of x on C', which is denoted by Il (x) = z. That is, the point z solves
the optimization problem as follows

inf ||x — yl|%. 1
Jnf, x -yl (1)

Question 1.

1. Can we always find a solution z to the problem in (1)?

2. Is the projection unique?

Indeed, the projection is always well defined, which is confirmed by the result as follows.

Theorem 1. Suppose that the set C C R™ is nonempty, convex, and closed. Then, for every
x € R", there exists exactly one point z € C that is closest to x.

Proof.
We first show the existence by the Extreme Value Theorem. We denote the objective function
of the problem in (1) by

fy) =IIx-ylP

which is clearly a continuous function of y. Let yg be an arbitrary point in C', and

r =[x —yol.-
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Figure 1: Illustration of the idea to prove Theorem 1. The left and right figures illustrate the
idea to prove the existence and the uniqueness of the projection of a given point with respect to a
nonempty closed convex set, respectively.

Then, if we denote the intersection of the ball B(x,r) and C' by C’, we can conclude that C’ is
nonempty, as it at least includes yo. We can see that the problem

inf f(y) (2)

yeC’

shares the same solution set with the problem in (1).

We next show that C” is compact. Indeed, as both the ball B(x,r) and C are closed, the set
(" is closed as well. Moreover, the boundedness of B(x,r) implies that C’ must be bounded. All
together, we conclude that the set C’ is compact.

Due to the continuity of f and the compactness of C’, the Extreme Value Theorem immediately
leads to the existence of z.

We next show the uniqueness of z. Suppose that two different point z; and zs solve the
optimization problem in (1). Let

v = f(z1) = f(z2) = izne%l Ix -yl

Consider the point

z1 + 29
Zy) = T

Then, the Pythagorean theorem leads to
lzo — x| =2~ Jllss — 7all® < 7,
a contradiction. This show that z must be unique. O
We next give an useful result that characterizes projections.
Lemma 1. Suppose that C is a nonempty closed convex set and let x € R™. Then,

z=1lgx) e (x—2z,y—2z) <0,VyeC.
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The above inequality is the so-called variational inequality.

Proof.
(=) Suppose that z = IIg(x). For any y € C, we define

gt) = fz+ty —2) =[x —z—t(y —2)|]” = [|x — 2|* - 2t(x — 2,y —2) + |}y —2|>.  (3)
For any t € (0, 1], we can see that,
g(0) < g(t), (why does this strict inequality hold?)
leading to
2x —z,y —z) <ty — z|%
As the above inequality holds for any ¢ € (0, 1], we can conclude that

(x—z,y—z) <0.

(«<=) Suppose that
(x—2z,y—2z)<0,VyeC.
Eq. (3) implies that g(0) < g(1) for any y # z, that is
f(z) < fly), Vy € C,y # =
Thus, the point z must be the projection of x on C. O

Question 2. What if C is an affine set in Lemma 17

Theorem 2 (Nonexpansiveness). Suppose that C C R™ is closed and convex. Then, for all
x,y € R, we have

Mo (x) — eyl < lIx =yl

Proof.
Lemma 1 leads to

Adding both sides we have
ITe (%) — T (v)|* + (e (x) = Te(y),y —x) <0,
which implies that
e (x) — Ho(y)|* < (He(x) — He(y), x —y) < [He(x) — De@)|lx — yll-
The claim follows immediately. O

Remark 1. We indeed have better results than nonexpansiveness, that is, firmly nonexpansive-
ness.
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3 Hyperplanes
Definition 1. [2] A hyperplane H C R" is an (n — 1)-dimensional affine subset of R", that is,
H={xeR": l(z)=a}
is the level set of a nontrivial linear function ¢ : R — R. If ¢ takes the form of
(x) = (a,x)
for a # 0 in R"™, then
H=Haq) ={x€R":(a,x) =a}.

Definition 2. Let H = H(, o) be a hyperplane in R™. The hyperplane H separates R" into two
closed half-spaces:
H(—;,a) ={xeR": (a,x) > a},

Hip o = {xeR": (a,x) < a}.

We denote the corresponding open half-spaces by
H(t;) ={xeR": (a,x) > a},

Hi o= {x eR": (a,x) < a}.
Definition 3. Let C; and C be two nonempty sets and H := H(, o) a hyperplane in R".

1. H is called a separating hyperplane for the sets C1 and C5 if they are contained in the
two closed half-spaces determined by H, respectively, e.g., C1 C H (Jr ) and Cy C H,_

a,a (a,)"

2. H is called a strictly separating hyperplane for the sets C; and Cj if they are contained
in the two open half-spaces determined by H, respectively, e.g., C; C H'" and Cy C H;_

(a,0) (@,0)°

3. H is called a strongly separating hyperplane for the sets C; and Cs if there exists 5 and

y with v < @ < B, such that Cy € Hy, . and Cp € H{, ;.

4. H is called a properly separating hyperplane for the sets C; and Cy if H separates C
and C5, and (1 and Cs are not both contained in the hyperplane H.

If there exists a hyperplane H separating the sets C1 and C5 in one of the senses above, we say that
C1 and (5 can be separated, strictly separated, strongly separated, properly separated, respectively.

Question 3. Can you find an example in which C; and C3 can be strictly separated instead of
being strongly separated?

4 Separation Theorems

4.1 Separation between a Point and a Convex Set

Theorem 3. Let C C R™ be a nonempty closed convex set, and let xog ¢ C. Then, the set C' and
the point xo can be strongly separated, that is, there exists a nonzero a € R™ and o < 8 such that

C C H(;a) and xq € H(;,g)'
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supporting
hyperplane

H (21. a)

Figure 2: Separation Theorems (Theorems 3 and 4).

Proof. Theorem 1 implies the existence and uniqueness of the projection of xg on C'. We define
a = x¢ — Hc(xo).
As xg ¢ C, the vector a # 0. We then define
a =(a,Ilc(x0)),
B =(a,xq).
Then,
B —a = (a,x—Ic(xo)) = [al*
Thus, we have a < f.

) The latter is trivial, as xo € H(a g) C H'

— +
We now show that C' C Hifé%) and xq € Hév (@,8)"

aiﬁ
To show the former, we note t for any y € C', we have

(a,y) = (a,y — g (x0) + Ilc(x0)) = (a,y — Ilc(xo)) + a.

By Lemma 1, we have

(a,y — I (xp)) <0.
Combining the above two inequalities, we have

(a,y) <a,Vye€eC,

which is equivalent to C C H (_ ) The proof is complete. O

a,o

Theorem 3 leads to an important characterization of closed convex sets, which is stated as
follows.

Corollary 1. [1] The closure of the convex hull of a set C is the intersection of the closed half-
spaces that contain C. In particular, a closed convex set is the intersection of the closed half-spaces
that contain it.
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Proof. Let S be the intersection of all closed half-spaces that contain C. As every closed half-space
containing C' must also contain cl (conv C) (why?), we must have cl (conv C) C S.

To show the reverse direction, we note that, for any x ¢ cl(conv C')—by Theorem 3—we
can find a hyperplane H strongly separating x and cl (conv C'). Thus, the corresponding closed
half-space induced by H that contains cl (conv C') does not contain x, so x ¢ S. This shows that
cl(conv C) D S. O

If the set C' in Theorem 3 is not closed, the set C' and the point x¢g ¢ C' may not be strongly
separated, as x¢ can be a boundary point of C.

Definition 4. Let C C R" be a nonempty set, and xg a point in its boundary bd C, i.e.,
xg€bd C=clC\int C.

A hyperplane H := H(, ,) is called a supporting hyperplane to C at the point x¢ if xo € H(a,q)

and C C H(_a ) that is,

(a,x) < (a,x0) =a, Vx e C.

Theorem 4 (Supporting Hyperplane Theorem). Let C' C R"™ be a nonempty convez set, and
xg @ point in its boundary bd C. Then, there exists a hyperplane supporting C' at xg.

Proof. To simplify notations, let C = cl C.
As x¢ € bd C, we can find a sequence (xi) with x; ¢ cl C, k =1,2,..., and x; — x¢ (why?).
We then construct a sequence of unit norm vectors by

_xp — o (xx)
ar = 17— -
%% — e (x|
Notice that cl C' is a closed convex set and x; ¢ cl C, k = 1,2,.... By Theorem 3, we have
(ar,y) < (ag,xx), Vy € C.

As ||ag|| =1for all k =1,2,...,, there exists a converging subsequence. Without loss of generality,
we assume that a; — a. Passing to the limit on both sides of the above inequality, we have

<aay> S <a7X0>a Vy S C7
which completes the proof (a = (a,xg)). O

Remark 2. To show Theorem 4, we construct convergent sequence so that we can apply the result
in Theorem 3. Indeed, different convergent sequences may lead to different separating hyperplanes.
Some of them are useful, that is, they can help us to distinguish different sets, while some of them
are not. For example, consider R3. Let

C={x:22+23<1,23=0}, x0=(1,0,0)".

Clearly, xg is a boundary point of C. Consider two sequences as follows.
xW = (141/n,00), x=(1,0,1/n)).

We can see that the hyperplanes induced by the above two sequences are
HY ={x:z; =1}, H® ={x:z3=0}.

Clearly, the hyperplane H(®) can help to distinguish the point xg from C, while H® can not.
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Remark 3. by Theorem 4, we can find a hyperplane such that it passes through xg € cl C and
separates xg from C. Geometrically, this hyperplane just touches C and it is said to be supporting
C at xg.

However, given a nonempty set C—which may not be convex—and a point xg € bd C, the
hyperplane supporting C' at x¢ may not even exist, e.g., C' = [0,1] N Q and xg = 0.5.

Figure 3: Separating Hyperplane Theorem.

4.2 Separation between Convex Sets

Theorem 5 (Separating Hyperplane Theorem). Let C; and Cy be two nonempty convex sets
in R"™. If Cy and Cs are disjoint, i.e., C1 N Co = 0, there exists a hyperplane that separates them.

Proof. Consider the convex (why?) set:
C=C1—-Cy={xeR":x=x1 —x3, X1 € C1,x2 € Ca}.
As C1 N Cy =0, we have 0 ¢ C. Then, we have two possible cases.
1. The set C' is closed. As 0 ¢ C, Theorem 3 implies that C' and 0 can be strongly separated.
2. The set C is not closed. As 0 ¢ C, we have two possible cases.

(a) 0 ¢ cl C. Again, by Theorem 3, the point 0 and cl C' can be strongly separated. Thus,
the point 0 and C can be strongly separated, as well.

(b) 0 € c1C. As 0 ¢ C, the point 0 must be a boundary point of C' (indeed, 0 is a
relative boundary point of C'). Theorem 4 implies that 0 and C' can be separated (by
the supporting hyperplane).

All together, we can conclue that, the set C' and 0 can be separated, i.e., there exists a vector
a # 0 such that

(a,x) >0,Vx € C,
which is equivalent to
<a,X1> > <a,x2), X1 € 01, X9 € 02.

If we let @ = infy, ¢, (a,x1), the above inequality implies that C; C H (+ ) and Cy C H,_ ,. This

a,a (a,a)

completes the proof. O
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X0 X0 X0

o C C

a a a
Ha,a) Ha,a) Ha,a)

(a) A convex set C lying in one side of (b) A convex set C sharing one of its (c) A convex set lying on a hyperplane
a hyperplane relative interior point with a hyper-
plane

Figure 4: Illustration of Lemma 2

Remark 4. One of the reasons why the separating theorems are important is that we want a
(simple) method to distinguish sets from one another. Given two sets, if they can be separated
by a hyperplane—that is, they are contained in the two closed half-spaces determined by the
hyperplane—we would like the linear function associated with the hyperplane takes different values
on points in these two sets. However, in some cases, even we can separate two convex sets in
the sense of the first part in Definition 2, the linear function associated with the hyperplane may
take the same value on the two sets, that is, we can not distinguish the two sets by the linear
function. For example, consider the unit disk C; = {x € R3 : ||x|| < 1,23 = 0} and the z-axis
Cy={x¢€ R?: 2y =ua3 = 0} in R3. These two sets are both convex and can be separated by the
x,y plane. However, the corresponding linear function ¢(x) = ((0,0, 1), x) takes the same value on
both sets. Notice that, the aforementioned two sets are overlapping, as C; N Cy # (.

Thus, we introduce the proper separation theorem, which turns out to be useful in some
important optimization scenarios and is more consistent with our intuition on the geometrical
meaning of separation.

We first introduce a useful lemma.

Lemma 2. Let C' be a nonempty convex set and a hyperplane H that contains C in one of its
closed half-spaces in R™. Then,

C C H < relint CN H # (.

Proof. (=) Suppose that C C H. Then, we must have relint C C H as relint C C C, and thus
relint C N H # (.

(<) Suppose that relint C N H # ). Let xo € relint C N H and H = H,,) with a # 0.
Without loss of generality, we assume that C' C H (J;l )’ i.e.,

(a,x) > a = (a,xq), Vx € C,
which is equivalent to

(a,x —x0) > 0,Vx € C. (4)
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As xg is a relative interior of C, for any x € C' and x # x¢, we can find a small positive number €
such that (why?)

Xr =Xo —T(x —%9) € C, V71 € [0,¢€).
Thus, for any 7 € [0, €), we have
(a,x; —%x0) > 0= —7(a,x —x¢) > 0= (a,x — xq) <0.
In view of the inequality in (4), we can conclude that
(a,x —x0) = 0= (a,x) = (a,x0) = a.
Thus, we have x € H, which implies that C' C H, as x is an arbitrary point in C. 0

Theorem 6 (Proper Separation Theorem). [1] Let C C R"™ be a nonempty convex set, and
X9 € R™ be a vector. There exists a hyperplane that properly separates C' and xq if and only if
xo ¢ relint C.

Proof. (=) Suppose that there exists a hyperplane H(q,o) that properly separates C' and xg. We
have two possibilities.

and C C H/

++
e (a,0)"

1. The point xg & H(a ). Without loss of generality, we assume that xo € H, (a
Then, we must have x¢ ¢ C' and thus x¢ ¢ relint C.

)

2. The set C ¢ H (a,0)- Without loss of generality, we assume that xo € H +t and C C H,

(a,a) (a,@)"

Due to Lemma 2, we have relint C N H = (), which implies that relint C C H,_ .. Thus,

(a)
we can conclude that xg ¢ relint C.

(<) Conversely, suppose that xg ¢ relint C. To show the existence of the hyperplane that
properly separates C' and xg, we consider two cases as follows.

1. The point x¢ ¢ aff C. As aff C is closed and convex, Theorem 3 implies that xo and aff C
can be strongly separated, and thus x¢ and C can be properly separated.

2. The point x¢ € aff C. We have two possibilities.
(a) The point xg ¢ cl C. Again, by Theorem 3, there exists a hyperplane that can strongly

separate xg and C' and thus also properly separate x¢ and C.

(b) The point xg € cl C. As x¢ ¢ relint C, the point xy must be a relative boundary point
of C. We consider two cases as follows.

i. rank(aff C) = n. Then, the point x¢ is indeed a boundary point of C. By the
Supporting Hyperplane Theorem, there exists a hyperplane H, o) supporting C' at
Xp, i.e.,

(a,x) < (a,x0) =a,Vx € C.

We can see that int C' N H, o) = 0 (why?). Then, Lemma 2 implies that C ¢ H,
that is, H(a ) properly separates C' and xy.
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ii. rank(aff C') < n. Let S be the subspace that is parallel to aff C', and consider the
set C' = C + S+, Clearly, rank(aff (i‘) = n, and x¢ € bd C. By a similar argument
with the last part, we can find a hyperplane H that properly separates xg and C ,
and thus properly separates xg and C' as well.

All together, the proof is complete. O

Theorem 7 (Proper Separation of Two Convex Sets). [1] Let C; and Cy be two nonempty
convex subsets of R™. There exists a hyperplane that properly separates C1 and Cy if and only if

relint C; Nrelint Cy = 0.

10



MIRMA Lecture 05. Separation Theorems

References

[1] D. Bertsekas. Convex Optimization Theory. Athena Scientific, 2009.

[2] O. Giiler. Foundations of optimization. Springer, 2010.

11



	Introduction
	Projection
	Hyperplanes
	Separation Theorems
	Separation between a Point and a Convex Set
	Separation between Convex Sets


