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Key distinction is not linear vs. nonlinear,
but convex or. nonconvex.

R. Tyrrell Rockafellar

1 Introduction

Many popular machine learning models take the form of
min f(w) + AQ(w),

where f is the so-called loss function that measures how well the model fits the training data, €2
is a regularization term, and A > 0 is the regularization parameter. When f is the least squares
loss and 2 is the square of the f5 norm of the model parameters, we have the well-known ridge
regression:

1
min 2 ly — Xwl3 + Awl3. 1)

If we replace the regularization term in (1) by the ¢; norm, we have another popular model, that
is, Lasso, as follows.

o1
min =y — Xw|3 + Allwl|:. (2)
w2

We have seen that, the ridge regression admits a closed form solution if the data matrix X has full
column rank, while the computational cost can be expensive as it involves finding the inverse of
a large-scale matrix. Noticing that the objective function in (1) is differentiable, we can use the
classical gradient descent method to iteratively find a solution up to a given accuracy. However,
this approach does not work for the Lasso problem in (2), as the regularizer is non-differentiable.

Problems like (2) involving nondifferentiable terms are the so-called nonsmooth problems, which
consist of a major research topic—called sparse learning—in machine learning. To deal with the
nonsmooth problems, we need to equip us with a suite of new tools. In the next couple of lectures,
we study a type of optimization problems—that is, convex optimization problems—which includes
many popular sparse learning models as special cases.

2 Affine Sets

Definition 1. A set C C R" is affine if the line through any two distinct points in C lies in C,
i.e., if for any x1,x9 € C, where x1 # x2, and 0 € R, we have 6x; + (1 — 0)xy € C.

Definition 2. A point z is called an affine combination of points X1,Xs,...,X,, if there exists
01,05, ...,0,, € R such that

X=01x1 +0sx0+...+60,%Xm
and

01 +60+...+0,, =1.
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Figure 1: The line passing through x; and x9 is described parametrically by 0z + (x — 0)x2, where
0 goes over the real line.
If C is an affine set and x¢ € C, then the set
V=C-xo={x—xp:x€C}
is a subspace. Thus, we can also describe the affine set C' by
C=V+xo={v+xp:veV}

The dimension of an affine set C' is the dimension of the subspace V = C — xg, where xq is an
arbitrary point in C.

Example 1 (Solution set of linear equations). Let A € R™*™ and b € R™. The solution set
C = {x: Ax = b} is an affine set.

Definition 3. The affine hull of a set C' is the set of all affine combinations of points in C', which
is denoted aff C:

affC:{91x1+~--+9kxk:xl,...,xk eC,Gl—i—---—i—Hk:l}.
The affine dimension of a set C' is the dimension of its affine hull.

Proposition 1. The affine hull of set C' is the smallest affine set that contains C.

Definition 4. The relative interior of the set C, denoted relint C, is its interior relative to aff C:
relint C = {xe C:3r >0,B(x,r)Nnaff C C C},

where B(x,7) = {y : |ly — x|| < r} is the ball of radius r and centered at x. The relative boundary
of C is defined as C'\ relint C, where C is the closure of C.

3 Convex Sets

Definition 5. In R”, a point x is a convex combination of the points {x1,...,xx} if
x = 01x1 + Ooxo + -+ - + Oy,

where 6; > 0 fori=1,...,k and

01 4+0:+...+0,=1.
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Figure 2: Convex and nonconvex sets.

Definition 6. The convex hull of a set C C R", denoted by conv C, is the set of all convex
combinations of points in C":

k k
conv C' = {Zﬁixi :x; €C,0;, > O,Zei = 1}.
i=1 i=1

The idea of convex combination can be generalized to include infinite sums, integrals, and, in
the most general form, probability distributions [1] (expectation).

\ N _

Figure 3: Convex hull.

Definition 7. A set C is convex if the line segment between any two points in C' lies in C'; that
is, if Vx1,x2 € C and V6 € [0, 1], we have

0x1 + (1 —0)xy € C.

Example 2. Suppose p : R" — R satisfies p(x) > 0 for all x € C and [ p(x)dx = 1, where
C C R" is convex. Then

/ p(x)xdx € C,

C

if the integral exists.

Definition 8. A function f: R"™ — R™ is affine if it takes the form of:
f(x) = Ax + b,

where A € R™*™ and b € R™.
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Proposition 2.

1. The intersection NiczC; of any collection {C; : i € T} of convex sets is convex, where T is an
index set.

2. The closure and the interior of a convex set are conver.

3. The image and the inverse image of a convex set under an affine function are conver.

Example 3.
1. Hyperplane: {x:a'x = b}, where a # 0 and b € R.
2. Halfspace: {x:a'x < b}, where a # 0 and b € R.
3. Norm ball: {x:|x —xq|| <r}, where r > 0.

4. Polyhedron: {x:a/x <b;,i=1,...,m}, where a; #0 and b; € R for i = 1,...,m.
5. Positive definite matrices S’} | .

Definition 9. A set C is called a cone, or nonnegative homogeneous, if Yx € C and 0 € [0,00),
we have 0x € C. A set C is a conver cone if it is convex and a cone; that is, Vx1,x2 € C and
01,02 > 0, we have

01x1 + O2xo € C.

Figure 4: Cones.

e A point of the form 61x; + --- + 0,,x,, with all nonnegative 61,...,60,, is called a conic
combination (or a nonnegative linear combination) of x1,...,Xm.

Definition 10. The conic hull of a set C' is the set of all conic combinations of points in C| i.e.,
VX1,...,Xm € C,
{91x1+---+9mxm:0i zo,izl,...,m},

which is also the smallest convex cone that contains C.

Notice that, a cone is not necessarily a convex set.
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Figure 5: Conic hulls.

4 Operations that Preserve Convexity

Lemma 1. Let 7 be an arbitrary index set. If the sets S; C R™, i € I, are convex, then the set
S = N;ezS; is convex.

Proof. Let x1,x9 € S. Thus, Vi € Z, we have x1,x9 € S;. As S; is convex, the line segment
between x;1 and xo also lies in .S;. Since this applies to all S;, ¢ € Z, the line segment also lies in
their intersection. O

Definition 11. We define the product of a set S by a scalar ¢ to get
cS={x:x€S}.
The Minkowski sum of two sets is defined by:
S1+ S ={x+y:x€8,y€ S}

Lemma 2. Let S1 and S5 be convex sets in R™ and let a,b € R. Then, the set S = aS; + bSy is
conver.

Proof. Let z1, z9 € S. The definition of the Minkowski sum implies that, there exist x;,y; € 5;,
i = 1,2, such that

z1 = axy + bxo and z9 = ay; + byo.

Then, V6 € [0, 1], we have
021 + (1 — 0)z2 = a(0x1 + (1 — O)y1) + b(0x2 + (1 — O)y2) € 5.

Therefore, the set S is convex. O

Lemma 3. Let S C R"™ be convex and f : R® — R™ be an affine function. Then, the image of S
under f

f(5) ={f(x): x e 5},

1S convex.

Proof. Let y1,y2 € f(5), i.e.,, y1 = Ax; + b and y2 = Axs + b. Then,
Oy1+ (1 —0)ys = A(0x; + (1 — 0)x2) + b € f(9).
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Lemma 4 (Carathéodory’s Lemma [2]). Suppose that S C R™. Then, every element of conv S is
a convex combination of at most n+ 1 points of S.

Proof. Let x = ;" | 0;x; be a convex combination of m > n+1 points of S. We shall show that m
can be reduced by one. If §; = 0 for some 4, then we are done. Otherwise, assume that all 8; > 0.
As m >n+1, we can find {o;}]", not all equal 0, such that

X1 X2 Xm|
a1|:1:|+042|:1:|+"'+06m|:1:|—0.

Let 7 = min{6;/a; : a; > 0}, k € argmin{6;/co; : o; > 0} and 0, = 0; — T, i = 1,2,...,m. Still,
we have ", 0 =1 and ) ", 0/x; = x. The definition of 7 leads to a fact that ¢}, = 0 and we
can delete the k" point. Repeating the above procedure, we can reduce the number of points to

n + 1. O
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