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The major reference of this lecture is [1].

1 Introduction

Suppose that we would like to predict the value of a random variable X in the next experiment
based on a set of its observations (this is indeed what we are trying to do in many machine learning
scenarios). As a random variable can take many different values, we will never know its exact value
until we perform the experiment and observe the outcome. Nevertheless, we can still estimate the
value of X in the next experiment. The question is, which value shall we pick to estimate X? Is
there a best estimation?

To answer this question, first of all, we need a measurement that can determine how good our
estimation is. One simple choice—which is widely used—is the average of the squares of errors
between our estimation c and the observed values {xi}ni=1 of X in a large number of experiments:

L(c) =
1

n

n∑
i=1

(c− xi)
2. (1)

The error function L(c) defined in Eq. (1) measures how accurate our estimation c of X is. Thus,
the best estimation we should take is the one that can minimize the error L(c). This is indeed the
average of the sample values {xi}ni=1 of X:

argmin
c

L(c) =
1

n

n∑
i=1

xi.

Suppose that we can perform the experiment infinitely many times, i.e., n → ∞. By the law of
large numbers, we have

L(c) → E[(c−X)2],

with probability 1. That is, the error function converges to the expectation of the square of error
in probability, and the best estimation becomes the expectation of X, i.e.,

argmin
c

E[(c−X)2] = E[X].

2 Loss Functions for Regression

Recall that, for supervised learning problems, each data instance consists of a D-dimensional input
feature vector X = (X1, X2, . . . , XD)

⊤ and the corresponding output Y ∈ R. We would like to find
a mapping f∗(X)—which is a random variable as well (why?)—to estimate the value of Y given a
sample of X. Let

ℓ(y, f(x)) = (f(x)− y)2

be the square loss. Similar to the idea we introduced in the last section, we choose f∗(X) to be the
minimizer of the expectation of the square loss:

E[ℓ] =
∫∫

(y − f(x))2p(x, y)dxdy, (2)

where p(x, y) is the joint PDF. The expectation in Eq. (2) is the so-called functional, which is,
roughly speaking, a mapping from functions to numbers.
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Example 1. Let C[a, b] be the set of continuous functions defined on the closed interval [a, b]. No-
tice that, the set C[a, b] is an infinite dimensional vector space (or linear space). Different from the
finite dimensional vector spaces we are familiar with, like Rn and Rm×n, the vectors/points/elements
in C[a, b] are functions. For any h(x) ∈ C[a, b], the integration∫ b

a
h(x)dx

defines a functional on C[a, b].

To emphasize that the expectation E[ℓ] is a functional of the estimation f , we denote E[ℓ] by
J [f ]. Then, how to find the function f∗ that minimizes J [f ] in Eq. (2)? That is, we need to solve
the optimization problem as follows:

min
f

{
J [f ] :=

∫∫
(y − f(x))2p(x, y)dxdy

}
, (3)

where the minimizer—if exists—is a function. Calculus tells us that, we can first find the gradient
of J [f ] and then set it to zero—with mild conditions—to solve for f∗. Although we know how to
differentiate functions of multiple variables, how can we differentiate functions of functions?

Recall that, for functions of several variables, we can study its differentiability at a given point
by its directional derivatives along all directions, which reduces the problems with multiple
variables to ones with a single variable, i.e.,

∇vg(z) = lim
ϵ↓0

g(z+ ϵv)− g(z)

ϵ
.

If g is differentiable, then we have

∇vg(z) = ⟨∇g(z),v⟩.

Thus, we can derive conditions for optimality by directional derivatives as well. Following this idea,
we may define directional derivatives for functionals by mimicing their counterparts in the several
variables cases, based on which we can derive optimality conditions to solve for the optimum. This
leads to techniques named calculus of variations.

Specifically, let h be a function of X. For a small number ϵ > 0, we add ϵh—which can be
understood as a small perturbation—to f , then

J [f + ϵh] = J [f ] + ϵ

∫
h(x)

{∫
−2(y − f(x))p(x, y)dy

}
dx+ ϵ2

∫
(h(x))2p(x)dx. (4)

Notice that, at a given point (function) f with a fixed direction h, the RHS of Eq. (4) is a function—
specifically, a quadratic function—of one single variable ϵ, which reduces the optimization problem
in (3) with respect to functions to that of a single variable. Then, many techniques from elementary
calculus apply. In view of Eq. (4), if f∗ is a local minimum of J [f ] along the direction of h, we
must have ∫

h(x)

{∫
−2(y − f∗(x))p(x, y)dy

}
dx ≥ 0.

A similar argument to −h concludes that∫
h(x)

{∫
−2(y − f∗(x))p(x, y)dy

}
dx = 0.
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Moreover, as h is arbitrary1, we must have∫
−2(y − f∗(x))p(x, y)dy = 0, (5)

which leads to

f∗(x) =

∫
yp(x, y)dy

p(x)
=

∫
y
p(x, y)

p(x)
dy =

∫
yp(y|x)dy = E[y|x]. (6)

Eq. (6) implies that, given an observation x of the input variables X, the best estimation—at least
in theory—we can make for the corresponding target variable Y is the conditional expectation
E[y|x]. This results is unsurprising, as it is a counterpart of the result in Section 1.

Remark 1. Notice that, Eq. (6) implies that E[y|x] is a function of x.

Question 1. The above discussion derives Eq. (5) as a necessary condition for f∗ being a local
minimum. Is it sufficient for this problem?

Remark 2. The second term on the RHS of Eq. (4) is a linear functional of the small perturbation
ϵh. Similar to differentials of functions of several variables, the second term provides a linear
approximation of the (nonlinear) functional J [f ] at f .

By letting ϵ ↓ 0 for both sides, we have

lim
ϵ↓0

J [f + ϵh]− J [f ]

ϵ
=

∫
h(x)

{∫
−2(y − f(x))p(x, y)dy

}
dx. (7)

The RHS of Eq. (7), if exists, is the so-called Gateaux differential of J at f with increment h,
which is the counterpart of directional derivatives of differentiable functions of several variables.

The result in Eq. (6) may shed new light on our understanding of the expectation of the square
loss in Eq. (2). We expand the square loss as follows

(f(x)− y)2 =(f(x)− f∗(x) + f∗(x)− y)2

= {f(x)− E[y|x]}2 + 2 {f(x)− E[y|x]} {E[y|x]− y}+ {E[y|x]− y}2 .

Then,

E[ℓ] =
∫

{f(x)− E[y|x]}2 p(x)dx+ 2

∫
{f(x)− E[y|x]}

{∫
{E[y|x]− y} p(x, y)dy

}
dx

+

∫∫
{E[y|x]− y}2 p(x, y)dydx.

We can see that, the second term on the RHS of the above equation vanishes as∫
{E[y|x]− y} p(x, y)dy =E[y|x]

∫
p(x, y)dy −

∫
yp(y|x)p(x)dy

=E[y|x]p(x)− p(x)E[y|x]
=0.

Therefore, we have

E[ℓ] =
∫

{f(x)− E[y|x]}2 p(x)dx+

∫∫
{E[y|x]− y}2 p(x, y)dydx. (8)

Given x, our estimation f(x) of y only appears in the first term on the RHS of Eq. (8). This implies
that, the best estimation—in terms of the expectation of the square loss E[ℓ]—we can make is
the conditional expectation E[y|x]. As the second term is independent with our estimation
f(x), it is the irreducible minimum value of the expected square loss.

1Indeed, we have mild conditions on h regarding to its measurability, which is out of the scope of this course.
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3 The Bias-Variance Decomposition

Section 2 shows that, the best estimation—in theory, as we put no constraints on f , which is
usually not the case in practice—of y given x is the conditional expectation E[y|x]. However, in
practice, there are two major reasons that keep us from finding the exact values of the conditional
expectation.

1. The data we have to fit our model on is limited. This is why we never know the data
distribution and the corresponding conditional expectation exactly. Moreover, even for the
same task, different person may collect different data sets, leading to different estimation
functions.

2. We choose our best estimation f̂∗ from a set of candidate functions, i.e., the hypothesis set H.
For example, the hypothesis set for the linear regression problems only consists of all linear
functions defined on input feature vectors, which probably do not include the conditional
expectation.

Then, what is the best estimation we can make if we have to chose it from a hypothesis set
with certain constraints? How can we properly evaluate the performance of a particular learning
algorithm?

Notice that, the conditional expectation E[y|x] is indeed a function of x. For notational con-
venience, we denote E[y|x] by f∗(x). Furthermore, let fS(x) be the prediction function (our esti-
mation) returned by a particular learning algorithm on a given data set S. Due to the randomness
in S, a reasonable way to assess the performance of the learning algorithm is to take average over
many different data sets sampled from the same distribution.

Specifically, for a particular data set S, the square loss between our estimation and the best
possible estimation at a given x is

(fS(x)− f∗(x))2.

The average (expectation) of our estimations over many data sets is ES [fS(x)]. Then,

(fS(x)− f∗(x))2 =(fS(x)− ES [fS(x)] + ES [fS(x)]− f∗(x))2

=(fS(x)− ES [fS(x)])
2 + (ES [fS(x)]− f∗(x))2

+2{fS(x)− ES [fS(x)]}{ES [fS(x)]− f∗(x)}.

We take expectation of both sides of the above expression with respect to S, leading to

ES [(fS(x)− f∗(x))2] = ES [(fS(x)− ES [fS(x)])
2] + (ES [fS(x)]− f∗(x))2, (9)

as

ES [(ES [fS(x)]− f∗(x))2] = (ES [fS(x)]− f∗(x))2,

ES [{fS(x)− ES [fS(x)]}{ES [fS(x)]− f∗(x)}] = 0.

We can see that, the first term—called the variance—on the RHS of Eq. (9) measures how spread
out our estimations based on various data sets are. The second term—called the squared bias—how
far on average our estimation on one input data instance is from that given by the best estimation,
i.e., the conditional expectation.
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The decomposition in Eq. (9) only refers to a single input data instance x. We substitute the
integrand of the first term on the RHS of Eq. (8) by the LHS of Eq. (9), leading to the decomposition
of the expected squared loss as follows:

expected loss = (bias)2 + variance + noise, (10)

where

(bias)2 =

∫
(ES [fS(x)]− f∗(x))2p(x)dx, (11)

variance =

∫
ES [(fS(x)− ES [fS(x)])

2]p(x)dx, (12)

noise =

∫∫
(f∗(x)− y)2p(x, y)dydx. (13)
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