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Lecture 02. Linear Regression
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The major reference of this lecture is [1].

1 The Problem Settings

Regression aims at predicting the value of one or more continuous target variables Y given a set
of observed (input/control) variables (features) X = (X1, X2, . . . , XD)

⊤ ∈ RD. Linear regression
assumes that the target variable (for simplicity, we assume that Y ∈ R) is a linear function of the
input features, that is,

Y = f(X;w) = w0 + w1X1 + w2X2 + . . .+ wDXD, (1)

where w = (w0, w1, . . . , wD)
⊤ ∈ RD+1.

To simplify the model in (1), we introduce a dummy variable X0 = 1 and denote X̄ =
(X0, X1, X2, . . . , XD)

⊤ = (1, X1, X2, . . . , XD)
⊤. Then, the model in (1) becomes

Y = f(X;w) = w⊤X̄. (2)

We would use the training data we have collected to find appropriate values for w.

2 Linear Regression by Least Squares

Suppose that we are given a data set {(xi, yi)}ni=1, where xi ∈ RD and yi ∈ R.
For the ideal case, we would like

yi = f(xi;w) = w⊤x̄i (3)

holds for all i = 1, . . . , n, where x̄i = (1, xi,1, . . . , xi,D)
⊤, that is, the model can perfectly explains

the data (the input variables are also known as explanatory variables). In matrix form, we can
write the system of the equations (3) as

y = Xw, (4)

where y = (y1, . . . , yn)
⊤ and X ∈ Rn×(D+1) with its ith row being x⊤

i with an additional 1 in the
first position, i.e.,

X =


x̄⊤
1

x̄⊤
2
...
x̄⊤
n

 =


1 x1,1 · · · x1,D
1 x1,1 · · · x1,D

1
...

. . .
...

1 xn,1 · · · xn,D

 .

For simplicity, we assumes that X has full (column) rank in this lecture.
Notice that, in real applications, Eq. (4) often has no solutions.

Question 1.

1. When the problem in (4) has no solution, it is called an inconsistent system. How to tell if
(4) is consistent or not?
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2. If the problem in (4) admits a solution, when it is (not) unique?

3. Can you illustrate your answer geometrically?

In many real problems, we have more equations in (4) than the number of input variables, i.e.,
n > D, and thus the system of equations in (4) is often inconsistent. This implies that, the linear
model can not perfectly explain the target variable by the input variables.

Question 2.
When does the linear model fail to explain the target variable via the input variables at all?

We thus would like to find a model that can minimize the fitting errors. We first define the
fitting error for each data instance by

ℓ(yi, f(xi;w)) = (yi − f(xi;w))2.

Then, the average fitting error of the linear model over the data set is

L(w) =
1

n

n∑
i

ℓ(yi, f(xi;w)) =
1

n

n∑
i

(yi − f(xi;w))2 =
1

n

n∑
i

(yi −w⊤x̄i)
2 =

1

n
∥y −Xw∥2.

We can thus estimate w by minimizing the total loss L, i.e.,

ŵLS ∈ argmin
w

L(w),

which can be done by the first order optimization conditions. Thus, by setting the gradient of L
to 0, we have

0 =
∂L(w)

∂w

∣∣∣∣
w=ŵLS

= − 1

n
X⊤(y −XŵLS). (5)

Then, solving (5) leads to

ŵLS = (X⊤X)−1X⊤y. (6)

The solution ŵLS in (6) is the so-called least-squares solution.
Thus, for a new data instance x, the estimated response by the model is

ŷ = f(x; ŵLS) = (x̄)⊤ŵLS .

Question 3. Why in Eq. (6), we can find the matrix inverse (X⊤X)−1?

Question 4. Elementary calculus tells us that, the condition in Eq. (5) is a necessary condition
for local extreme points. Thus, the solutions to (5) can be local minimizers, local maximizers, or
saddle points. How to ensure that the solutions to (5) are minimizers of L(w)?
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2.1 The geometric interpretation of the least squares solution

In view of the model in (3) and (4,) and the estimated parameters in (6,) the estimated responses
on the given data instances can be written as

ŷ = XŵLS = X(X⊤X)−1X⊤y. (7)

There is a nice geometric meaning of the above equation, that is, ŷ is the projection of y onto the
column space of X. Specifically,

ŷ = argmin
z∈C(X)

∥z− y∥2,

where C(X) is the column space of X. Thus, we call the matrix

P = X(X⊤X)−1X⊤

the projection matrix that projects an arbitrary vector to the column space of X.

Question 5.

1. How to tell if ŷ is the projection of y on C(X)?

2. How to find ŷ when X is not invertible? Is ŷ unique? What about ŵLS in Eq. (7)?

2.2 Regularized least squares

One of the most commonly used approach to alleviate over-fitting is by adding a regularization
term to the loss function

L(w) + λΩ(w),

where λ is the positive regularization parameter. One of the simplest regularizers is given by the
ℓ2-norm of the model parameters:

Ω(w) = ∥w∥22 = w⊤w.

In this case, we estimate the weight parameters w by minimizing the total loss

ŵRLS ∈ argmin
w

L(w) + λw⊤w. (8)

By the first-order optimization condition, we have

0 =
∂(L(w) + λw⊤w)

∂w

∣∣∣∣
w=ŵRLS

= − 2

n
X⊤(y −XŵRLS) + 2λŵRLS ,

which leads to

ŵRLS = (X⊤X+ nλI)−1X⊤y.

Remark 1. Notice that, the matrix X⊤X+λI is always invertable (why?), which implies that the
problem in (8) always admits a unique solution. This is an extra benefit by the regularization.

The above regularized least squares regression is also known as the ridge regression. In general,
the regularization term would encourage the weight values to shirink towards zero.
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2.3 Basis function

We can also model nonlinear relationships between the input features and the corresponding re-
sponse by introducing the so-called basis functions. Specifically, let

ϕi(x) : RD → R, i = 1, . . . ,m

be a set of transformations—that can be nonlinear—of the input data. Then,

f(x;w) = w0 + w1ϕ1(x) + w2ϕ2(x) + . . .+ wmϕm(x).

Commonly used basis functions includes polynomials, Gaussians, sigmoid functions, etc. Notice
that, the model is still linear with respect to the parameters.

3 Linear Regression by Maximum Likelihood

Consider real applications. We can never take into account all the influencing factors and our
equipments are not perfect. This implies that even we sample exactly the same data instance, we
may get as many different values of the response variables as the times we evalute the corresponding
response. Thus, we can explicitly introduce this uncertainty into our model:

Y = f(X;w) = w0 + w1X1 + w2X2 + . . .+ wDXD + ϵ, (9)

where

ϵ ∼ N (0, σ2).

Thus, for each input data instance, the output is

yi = f(xi;w) + ϵi = w⊤x̄i + ϵi.

Notice that, though {xi} is fixed, the target variable {yi} is not (why?).
Thus, the probability density function of yi conditioned on the model parameters and the input

variables is

p(yi|xi,w, σ) = N (w⊤x̄i, σ
2).

The key idea of the Maximum Likelihood Estimation (MLE) is that we try to find ŵ that can
maximize the joint density (likelihood) of {yi} conditioned on the model parameters and the input
variables, that is

ŵML = argmax
w

p(y1, . . . , yn|x1, . . . ,xn,w, σ) = argmax
w

p(y|X,w, σ). (10)

By assuming that {yi} are mutually independent given the model parameters and the input
variables, the so-called likelihood function—that is, the objective function in (10)—takes the form
of

L(w) = p(y|X,w, σ) =
n∏

i=1

p(yi|xi,w, σ). (11)
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For computational convenience, we usually deal with the log-likelihood.

logL(w) =
n∑

i=1

log

(
1√
2πσ2

exp

{
− 1

2σ2
(yi − f(xi;w))2

})

=− n

2
log 2π − n log σ − 1

2σ2

n∑
i=1

(yi −w⊤x̄i)
2

=− n

2
log 2π − n log σ − 1

2σ2
∥y −Xw∥2.

The first-order optimization condition implies that

0 =
∂ logL(w)

∂w

∣∣∣∣
w=ŵML

=
1

σ2

(
X⊤y −X⊤XŵML

)
.

Thus,

ŵML = (X⊤X)−1X⊤y,

which is the same as the one derived from the least squares perspective.
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