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Notice, to get the full credits, please present your solutions step by step.

Exercise 1: Principal Component Analysis

Suppose that we have a set of data instances {xi}ni=1 ⊂ Rd. Let gk ∈ Rd, k = 1, . . . ,K,
with K ≤ d, be a set of orthonormal vectors such that

⟨gi,gj⟩ =

{
1, i = j;

0, otherwise,

and

G = (g1, . . . ,gK).

From the lecture, we know that the main purpose of PCA is to find a set of orthonormal
vectors {g1,g2, . . .gK} that maximizes the sample variance, and finally, the problem
becomes:

max
G∈Rd×K

tr(G⊤SG), (1)

s.t.G⊤G = I,

where

S =
1

n− 1

n∑
i=1

(xi − x̄)(xi − x̄)⊤. (2)

1. The projection of the xi into the subspace spanned by {g1, . . . ,gK}, that is, the
column space of G, is

zi = PG(xi) = GG⊤xi.

Show that if xi is in the subspace spanned by {g1, . . . ,gK}, we have:

zi = GG⊤xi = xi

2. Show that the problem (1) always admits a solution but it may not be unique.

We use a different method from that given in lecture to solve the problem. Notice it
is hard to optimize the problem directly since the feasible set is a matrix space. We could
find the vectors gk, k = 1, . . . ,K step by step. Assume that λ1 > λ2 > · · · ≥ 0, where
λi, i = 1, 2, . . . ,K are the eigenvalues of S.
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4. Please find g1 defined as follows by the Lagrange multiplier method.

g1 := argmax
g∈Rd

{g⊤Sg : ∥g∥2 = 1}. (3)

Notice that, the vector g1 is the first principal component vector of the data.

5. Please find g2 defined as follows by the Lagrange multiplier method.

g2 := argmax
g∈Rd

{g⊤Sg : ∥g∥2 = 1, ⟨g,g1⟩ = 0},

where g1 is given by (3). Similar to g1, the vector g2 is the second principal component
vector of the data.

6. Please derive the first K principal component vectors by repeating the above process.

Solution:
■
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Exercise 2: An Alternative Approach to Principal Component Analysis via
Reconstruction Error
In the class, we derive PCA from the perspective of projecting the data instances into
a subspace such that the set of projected data instances preserves as much
information—measured by the projection variance—as possible. Thus, we call this
approach to PCA as maximization of projection variance.

Indeed, there is another equivalent approach to PCA, which is called minimization
of reconstruction error. The idea of this approach is to look for a subspace such
that the projections of the data instances into this subspace best approximate
the data instances. The metric to measure the approximation is the sum of the squared
differences between the data instances and the corresponding projections.

1. Please derive PCA based on the idea of minimization of reconstruction error as
introduced above. Please show your derivation step by step as what we did in the
class. You can use the notations we introduced in the class.

2. Please solve the PCA you derived in the first part, and show that it is equivalent to
the one we introduced in the class.

Solution: ■
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Exercise 3: Principle Component Analysis. ( Programming Exercise)

You are given 180 hand-drawn sketches from the TU-Berlin Sketch dataset, divided equally
into three categories: guitar, tree, and tomato (60 images per category). Each image is
grayscale and of size 64× 64, which can be represented as a data point in Rd with d = 4096
(by flattening the 64×64 pixel grid into a vector). For each category separately, let {xi}60i=1

denote the dataset, and define the centered data matrix X̃ ∈ Rd×60 whose i-th column is
xi − x̄, where x̄ is the sample mean. Please complete the following tasks:

1. Data Preprocessing: The image has been flattened into a vector xi ∈ R4096 (i =

1, . . . , 60). Please first compute the sample mean x̄ = 1
60

60∑
i=1

xi, and then create the

centered data matrix X̃ ∈ R4096×60 whose i-th column is xi − x̄.

2. Principal component computation: Compute the singular value decomposition
(SVD) of X:

X̃ = UΣV ⊤.

Let u1 and u2 be the first two columns of U(corresponding to the two largest singular
values). Reshape x̄, u1, and u2 into 64 × 64 images and display them. Additionally,
plot the singular values: create a line or stem plot with the horizontal axis showing the
component index (1, 2, 3, . . . ) and the vertical axis showing the corresponding singular
values σ1, σ2, σ3, . . . (i.e., the diagonal entries of Σ).

3. Analysis: For each category, interpret the visual patterns in the displayed mean
image and the first two principal components:

• Describe what visual structure the mean image captures.
• Explain what type of shape variation is represented by the first principal com-

ponent (PC1), and why it corresponds to the direction of maximum variance.
• Explain what kind of secondary variation is captured by the second principal

component (PC2), and how its orthogonality to PC1 influences its interpretation.

You may use any programming language (Python recommended).

Solution: ■
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Exercise 4: Properties of Transition Matrix

A transition matrix (also called a stochastic matrix, probability matrix) is a square matrix
used to describe the transitions of a Markov chain. Each of its entries is a nonnegative
real number representing a probability. A right (left) transition matrix is a square matrix
with each row (column) summing to one. Without loss of generality, we study the right
transition matrix in this exercise. Suppose that T ∈ Rn×n is a right transition matrix.

1. Show that 1 is an eigenvalue of T.

2. Let λ be an eigenvalue of T. Show that |λ| ≤ 1.

3. Show that I− γT is invertible, where I ∈ Rn×n is the identity matrix and γ ∈ (0, 1).

Solution:
■
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Exercise 5: Planning with a Two-Armed Bandit

Consider a two-armed bandit with two states as shown in Figure 1. A player can either pull
the Bandit 1 or Bandit 2 trigger, and the bandit will dispense coins and transit its state
according to the following rules.

• At State 1, only Bandit 1 dispenses 1 coin. Pulling Bandit 1 does not cause a state
transition, and pulling Bandit 2 has a p1 = 0.5 probability of transitioning to State 2.

• At State 2, Bandit 1 dispenses 2 coins, and Bandit 2 dispenses 3 coins. Pulling
Bandit 1 does not cause a state transition, and pulling Bandit 2 has a p2 = 0.7
probability of transiting to State 1.

Now assume that the reward equals the number of coins dispensed, and the player can play
the bandit infinite times.

1. Please find the state space S, the action space A, and the transition function P (s′|s, a)
of the two-armed bandit, and draw the Markov process diagram.

2. Let γ = 0.9. Please find the state value functions V π(s) for the given policy π(a|s):

(a) π1: Always pull the Bandit 2.
(b) π2: Pull Bandit 2 at State 1, and pull Bandit 1 at State 2.

3. For the cases where γ = 0.1 and γ = 0.99, please find the optimal policy π∗ and its
state value function V π∗

(s). Please explain the effect of the value of γ based on the
results.

Figure 1: Illustration of the two armed-bandit.

Solution:
■
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Exercise 6: Value Iteration and Policy Iteration in Grid World

Consider a simplified 3×2 deterministic grid world where an agent needs to find the optimal
path to a goal. The agent starts at (0, 0) and the goal is at (2, 1). There is an obstacle
at (1, 1). The agent can take actions A = {up, down, left, right}. If an action would move
the agent out of the grid or into the obstacle, the agent stays in its current position. The
immediate reward is −1 for all non-goal states and +10 for reaching the goal. The discount
factor is γ = 0.9.

The grid layout is shown below (G: goal, ×: obstacle, S: start):

x

y

S

G×·

··

0 1 2

0

1

1. Please find the state space S, the action space A, the reward function r(s, a), and the
deterministic transition function.

2. Value Iteration: Starting from initial value function V0(s) = 0 for all s ∈ S, man-
ually compute the value functions V1(s) and V2(s) after the first two iterations. For
each iteration, show the Q-value calculations for all states.

3. Policy Iteration: Let the initial policy π0 be: at every state, choose Right if legal
(the agent will not move out of the grid or into the obstacle); otherwise choose UP if
legal; otherwise choose DOWN. Perform one complete iteration of policy iteration:

(a) Policy Evaluation: Solve the system of linear equations to compute V π0(s) for
all states.

(b) Policy Improvement: Using V π0 , compute the improved policy π1(s) for all
states.

4. Compare the results after two iterations of value iteration and one iteration of policy
iteration.

(a) Discuss whether the observed performance difference is solely due to the choice
of the initial policy π0.

(b) Beyond the initial policy, what are the fundamental algorithmic reasons that
policy iteration typically requires fewer iterations to converge than value iteration

Solution:
■

7


