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Notice, to get the full credits, please show your solutions step by step.

Exercise 1: Proximal Operator

For a convex function f : Rn → R, we define its proximal operator at x by

proxf (x) = argmin
u∈dom f

{
f(u) +

1

2
∥u− x∥2

}
.

1. The proximal operator has the following properties.

(a) If f is proper and close (which means epif is close), please show that for any
x ∈ Rn, proxf (x) exists and is unique. You can use the properties we have
proved in Homework 4 directly.

(b) If f is proper and close, then show that u = proxf (x) if and only if x−u ∈ ∂f(u).
(c) (Optional) Please show that if u = proxf (x),v = proxf (y), then

⟨u− v,x− y⟩ ≥ ∥u− v∥22,

which means proxf is firmly nonexpansive. Then show that this implies nonex-
pansive ∥∥proxf (x)− proxf (y)

∥∥
2
≤ ∥x− y∥2.

2. Please show that the proximal operator satisfies the following equations.

(a) For λ ̸= 0 and a ∈ Rn, we let h(x) = f(λx+a), then proxh(x) =
1
λ

(
proxλ2f (λx+ a)− a

)
.

(b) For λ > 0, we let h(x) = λf
(
x
λ

)
, then proxh(x) = λ proxλ−1f

(
x
λ

)
.

(c) For a ∈ Rn, we let h(x) = f(x) + a⊤x, then proxh(x) = proxf (x− a).

3. Please find the proximal operator of the following functions.

(a) f(x) = ∥x∥2
(b) f(x) = IC(x), where C is a convex set.

4. Consider the convex optimization problem

min
x∈Rn

f(x) + ĨD(x), (1)

where D ⊆ Rn is a closed convex set and ĨD(x) is the extended-value extension of its
indicator function ID(x).

(a) Write down the optimality condition and the proximal operator of Problem (1).
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(b) Find the relationship between (1) and the constrained optimization problem

min
x∈D

f(x).

5. Recall the convex optimization problem in Lecture 08.

min
x∈Rn

F (x).

Please rewrite p(xc) using proximal operator.

6. If we use ISTA to solve the following problems, please find the p(w) of them.

(a) The Elastic Net optimization problem, defined as:

min
w∈Rn

1

n
∥y−Xw∥22 + λ1∥w∥1 + λ2∥w∥22,

where λ1 > 0, and λ2 > 0.
(b) The Group Lasso optimization problem, defined as:

min
w∈Rn

1

n
∥y −Xw∥22 + λ

G∑
j=1

∥wGj∥2,

where λ > 0.

Solution: ■
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Exercise 2: Proximal Gradient

Consider the following convex optimization problem

min
x

F (x) (2)

s.t.x ∈ D

where F : Rn → R is a proper convex function and D ⊆ Rn is a nonempty convex set
with D ⊆ dom F . Suppose that the problem (2) is solvable, and we do not require the
differentiability of F .

1. If x ∈ int (dom F ) ∩D and there exists a g ∈ ∂F (x) such that

⟨g,y− x⟩ ≥ 0, ∀y ∈ D,

show that x is optimal.

2. Please give an example to show that ∂F (x) can be empty.

3. Suppose f : Rn → R is twice continuously differentiable, and the Hessian matrix of f
is H(x).

(a) Let λmax(x) represents the largest eigenvalue of H(x). If

λmax(x) ≤ L, ∀x ∈ Rn,

please show that:

f(y) ≤ f(x) + ⟨∇f(x),y − x⟩+ L

2
∥y − x∥2.

(b) Let λmin(x) represent the smallest eigenvalue of H(x). If f is strongly convex
with convexity parameter µ > 0, please show that:

µ ≤ λmin(x), ∀x ∈ Rn.

In many cases, the function F can be decomposed into F = f + g, where g : Rn → R is
a continuous convex function, and f : Rn → R is a convex and continuously differentiable
function, whose gradient is Lipschitz continuous with the constant L. We can use ISTA,
which has been introduced in Lecture 08, to find min

x∈Rn
F (x).

4. For a given point xc, we consider the following quadratic approximation of F :

Q(x;xc) = f(xc) + ⟨∇f(xc),x− xc⟩+
L

2
∥x− xc∥2 + g(x).

Please show that it always admits a unique minimizer

p(xc) = argmin
x∈Rn

Q(x;xc).

3
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5. If we use ISTA to solve the Lasso problem, show that

w+
i =


zi +

λ

L
, if zi < −

λ

L
,

0, if |zi| ≤
λ

L
,

zi −
λ

L
, if zi >

λ

L
,

where z = wk −
2

Ln
X⊤(Xwk − y).

Solution: ■
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Exercise 3: [1] ISTA with Backtracking

Suppose that we would like to apply ISTA to solve the convex optimization problem

min
x∈Rn

F (x) = f(x) + g(x), (3)

where g : Rn → R is a continuous convex function, and f : Rn → R is a convex and contin-
uously differentiable function, whose gradient is Lipschitz continuous with the constant L.
We assume that Problem (3) is solvable, i.e., there exists x∗ such that

F (x∗) = F ∗ = min
x∈Rn

F (x).

In practice, however, a possible drawback of ISTA is that the Lipschitz constant L is not
always known or computable. For instance, if f(x) = ∥Ax−b∥22, the Lipschitz constant for
∇f depends on λmax(A⊤A), which is not always easily computable for large-scale problems.
To tackle this problem, we always equip ISTA with the backtracking stepsize rule as shown
in Algorithm 1.

Note that in Algorithm 1, QL and pL are defined as

QL(x;xc) = f(xc) + ⟨∇f(xc),x− xc⟩+
L

2
∥x− xc∥22 + g(x)

pL(xc) = argmin
x∈Rn

QL(x;xc).

Algorithm 1 ISTA with Backtracking
1: Input: An initial point x0, an initial constant L0 > 0, a threshold η > 1, and k = 1.
2: while the termination condition does not hold do
3: Find the smallest non-negative integer ik such that with L̃ = ηikLk−1

F (pL̃(xk−1)) ≤ QL̃(pL̃(xk−1);xk−1). (4)

4: Lk ← ηikLk−1, xk ← pLk
(xk−1),

5: k ← k + 1,
6: end while

1. Show that the sequence {F (xk)} produced by Algorithm 1 is non-increasing.

2. Show that Inequality (4) is satisfied for any L̃ ≥ L, where L is the Lipschitz constant
of ∇f , thus showing that for Algorithm 1 one has Lk ≤ ηL for every k ≥ 1.

3. Let {xk} be the sequence generated by Algorithm 1. Show that for any k ≥ 1 we have

F (xk)− F (x∗) ≤ ηL∥x0 − x∗∥22
2k

, ∀x∗ ∈ argmin
x∈Rn

F (x).
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The above result means that the number of iterations of Algorithm 1 required to
obtain an ε-optimal solution, i.e., an x̂ such that F (x̂)− F (x∗) ≤ ε, is at most⌈

ηL∥x0 − x∗∥22
2ε

⌉
.

Solution: ■
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Exercise 4: Programming Exercise: Naive Bayes Classifier

We provide you with a data set that contains spam and non-spam emails (“hw5_nb.zip”).
Please use the Naive Bayes Classifier to detect the spam emails. Finish the following
exercises by programming. You can use your favorite programming language.

1. Remove all the tokens that contain non-alphabetic characters.

2. Train the Naive Bayes Classifier on the training set according to Algorithm 2.

3. Test the Naive Bayes Classifier on the test set according to Algorithm 3. You may
encounter a problem that the likelihood probabilities you calculate approach 0. How
do you deal with this problem?

4. Compute the confusion matrix, accuracy, precision, recall, and F-score.

5. Without the Laplace smoothing technique, complete the steps again.

Algorithm 2 Training Naive Bayes Classifier
Input: The training set with the labels D = {(xi, yi)}.

1: V ← the set of distinct words and other tokens found in D
2: for each target value c in the labels set C do
3: Dc ← the training samples whose labels are c

4: P (c)← |Dc|
|D|

5: Tc ← a single document by concatenating all training samples in Dc

6: nc ← |Tc|
7: for each word wk in the vocabulary V do
8: nc,k ← the number of times the word wk occurs in Tc

9: P (wk|c) =
nc,k+1
nc+|V|

10: end for
11: end for

Algorithm 3 Testing Naive Bayes Classifier
Input: An email x. Let xi be the ith token in x . I = ∅.

1: for i = 1, . . . , |x| do
2: if ∃wki ∈ V such that wki = xi then
3: I ← I ∪ i
4: end if
5: end for
6: predict the label of x by

ŷ = argmax
c∈C

P (c)
∏
i∈I

P (wki |c)

Solution: ■
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Exercise 5: Logistic Regression and Newton’s Method

Given the training data D = {(xi, yi)}ni=1, where xi ∈ Rd and yi ∈ {0, 1}. Let

I+ = {i : i ∈ [n], yi = 1},
I− = {i : i ∈ [n], yi = 0},

where [n] = {1, 2, . . . , n}. We assume that I+ and I− are not empty.
Then, we can formulate the logistic regression of the form.

min
w

L(w) = − 1

n

n∑
i=1

(
yi log

(
exp(⟨w,xi⟩)

1 + exp(⟨w,xi⟩)

)
+ (1− yi) log

(
1

1 + exp(⟨w,xi⟩)

))
, (5)

where w ∈ Rd+1 is the model parameter to be estimated and x⊤
i = (1,x⊤

i ).

1. (a) Suppose that the training data is strictly linearly separable, that is, there exists
ŵ ∈ Rd+1 such that

⟨ŵ, x̄i⟩ > 0, ∀ i ∈ I+,
⟨ŵ, x̄i⟩ < 0, ∀ i ∈ I−.

Show that problem (5) has no solution.
(b) Suppose that the training data is NOT linearly separable, that is, for all w ∈

Rd+1, there exists i ∈ [n] such that

⟨w, x̄i⟩ < 0, if i ∈ I+,

or

⟨w, x̄i⟩ > 0, if i ∈ I−.

Show that problem (5) always admits a solution.

2. Suppose that X = (x1,x2, . . . ,xn)
⊤ ∈ Rn×(d+1) and rank(X) = d + 1. Show that

L(w) is strictly convex, i.e., for all w1 ̸= w2,

L(tw1 + (1− t)w2) < tL(w1) + (1− t)L(w2), ∀ t ∈ (0, 1).

Solution: ■
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Exercise 6: Convergence of Stochastic Gradient Descent for Convex Function

Consider an optimization problem

min
w

F (w) =
1

n

n∑
i=1

fi(w), (6)

where the objective function F is continuously differentiable and strongly convex with con-
vexity parameter µ > 0. Suppose that the gradient of F , i.e., ∇F , is Lipschitz continuous
with Lipschitz constant L, and F can attain it minimum F ∗ at w∗. We use the stochastic
gradient descent(SGD) algorithm introduced in Lecture 12 to solve the problem (6). Let
the solution sequence generated by SGD be (wk).

1. Please show that ∀w ∈ dom F , the following inequality

F (w)− F ∗ ≤ 1

2µ
∥∇F (w)∥2 (7)

holds, and interpret the role of strong convexity based on this.

2. Recall that with a fixed stepsize α ∈ [0, 1
LMG

] where MG (as well as the following M)
is a parameter regarding the upper bound of the variance of stochastic gradient in
SGD, the sequence (E[F (wk)]) generated by SGD converges to a neighborhood of F ∗

with a linear rate, i.e,

Eξ0:ξk−1
[F (wk)− F ∗] ≤ LM

2µ
α+ (1− µα)k(F (w0)− F ∗ − LM

2µ
α)

linear−−−→ LM

2µ
α.

(a) In practice, for the same problem, SGD enjoys less time cost but more iteration
steps than gradient descent methods and may suffer from non-convergence. As
a trade-off between SGD and gradent descent approaches, consider using mini-
batch samples to estimate the full gradient. Taking kth iteration as an example,
instead of picking a single sample, we randomly select a subset Sk of the sample
indices to compute the update direction

gk(ξk) =
1

|Sk|
∑
i∈Sk

∇fi(wk)

where ξk is the selected samples. For simplicity, suppose that the mini-batches
in all iterations are of constant size, i.e., |Sk| = nm, and the stepsize α is fixed.
Please show that for mini-batch SGD, there holds

Eξ0:ξk−1
[F (wk)− F ∗] ≤ LM

2µnm
α+ (1− µα)k(F (w0)− F ∗ − LM

2µnm
α)

linear−−−→ LM

2µnm
α.

Moreover, point out the advantage of mini-batch SGD compared to SGD in terms
of the number of the iteration step.

(b) The expected optimality gap of SGD, i.e., Eξ0:ξk−1
[F (wk)−F ∗], fails to converge

to zero. In order to alleviate this problem, we consider a strategy of diminishing
stepsize αk. Suppose that the SGD method is run with a stepsize sequence (αk)
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such that, for all k ∈ N,αk = β
γ+k for some β > 1

µ and γ > 0 satisfying α0 ≤ 1
LMG

.
Please show that ∀k ∈ N, we have

Eξ0:ξk−1
[F (wk)− F ∗] ≤ τ

γ + k
,

where τ = max{ β2LM
2(βµ−1) , γ(F (w0)− F ∗)}.

Solution: ■
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Exercise 7: Programming Exercise: Logistic Regression

We provide you with a dataset of handwritten digits called MNIST1, that contains a training
set of 60000 examples and a test set of 10000 examples (“hw5_lr.zip”). Each image in this
dataset has 28 × 28 pixels and the associated label is the handwritten digit—that is, an
integer from the set {0, 1, · · · , 9}—in the image. In this exercise, you need to build a logistic
regression classifier to predict if a given image has the handwritten digit 6 in it or not. You
can use your favorite programming language to finish this exercise.

1. Normalize the data matrix and please find a Lipschitz constant of ∇L(w), where L(w)
is the objective function of the logistic regression after normalizing and w is the model
parameter to be estimated.

2. (a) Use the gradient descent algorithm (GD), which is a special case of ISTA intro-
duced in Lecture 09, and SGD to train the logistic regression classifier on the
training set, respectively. Evaluate the classification accuracy on the training
set after each iteration. Stop the iteration when Accuracy ≥ 95% or total steps
are more than 2000. Please plot the accuracy of these two classifiers (the one
trained by GD and the other trained by SGD) versus the iteration step on one
graph.

(b) Compare the total iteration counts and the total time cost of the two methods
(GD and SGD), respectively. Please report your result.

(c) Compare the confusion matrix, precision, recall and F1 score of the two classifiers
(the one trained by GD and the other trained by SGD). Please report your result.

3. (a) The order of data samples affects the convergence of SGD. Implement and com-
pare the following sampling strategies for training the logistic regression classi-
fier(other experimental setup details is in line with 2.(a)):

• Random Sampling without Replacement: At the start of each epoch, shuffle
the entire training set and perform parameter updates by iterating through
all samples sequentially.

• Random Sampling with Replacement: At each iteration, uniformly sample
a single data point from the full training set to update parameters.

• Mini-batch Sampling: In each epoch, partition the training set into fixed-size
sequential mini-batches and perform updates iteratively.

(b) Please plot the accuracy of these classifiers versus the iteration step on one graph.
Compare the convergence speeds and stability of these classifiers. Please report
your result.

Solution: ■

1It was created by the National Institute of Standards and Technology (NIST).
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