Introduction to Machine Learning
Fall 2025
University of Science and Technology of China

Lecturer: Jie Wang Homework 5
Posted: Nov. 29, 2025 Due: Dec. 10, 2025

Notice, to get the full credits, please show your solutions step by step.

Exercise 1: Proximal Operator
For a convex function f : R™ — R, we define its proximal operator at x by

. 1
prox(x) = arg min {f(u) + QHu - x|]2} .
uedom f

1. The proximal operator has the following properties.

(a) If f is proper and close (which means epif is close), please show that for any
x € R”, proxf(x) exists and is unique. You can use the properties we have
proved in Homework 4 directly.

(b) If f is proper and close, then show that u = prox;(x) if and only if x—u € Jf(u).
(c) (Optional) Please show that if u = prox(x),v = prox,(y), then

(u=v,x—y) > u-v|3

which means proxy is firmly nonexpansive. Then show that this implies nonex-
pansive

[|prox ¢ (x) — prox;(y)||, < [Ix = yll2-
2. Please show that the proximal operator satisfies the following equations.
(a) For A # 0 and a € R", we let h(x) = f(Ax+a), then prox,(x) = 3 (proxyzs(Ax +a) —a).
(b) For A >0, we let h(x) = Af (¥), then prox;,(x) = Aproxy-1; (X).
(c) For a € R™, we let h(x) = f(x) +a'x, then prox;,(x) = prox;(x — a).
3. Please find the proximal operator of the following functions.

(a) f(x) =[xl

(b) f(x) = Ic(x), where C is a convex set.

4. Consider the convex optimization problem

min f(x) + Ip(x), (1)

where D C R™ is a closed convex set and Ip(x) is the extended-value extension of its
indicator function Ip(x).

(a) Write down the optimality condition and the proximal operator of Problem (1).
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(b) Find the relationship between (1) and the constrained optimization problem

min f(x).

xeD
5. Recall the convex optimization problem in Lecture 08.

in F'(x).
xaip F)

Please rewrite p(x.) using proximal operator.
6. If we use ISTA to solve the following problems, please find the p(w) of them.

(a) The Elastic Net optimization problem, defined as:

o1
min — ||y — Xwl[3 + Ai[[wll + Aaf[w3,
weR™ 1

where A1 > 0, and Ay > 0.
(b) The Group Lasso optimization problem, defined as:

G
1 Z
s - X 2 by We.
vgéIIRI{ln n”y I3+ j=1 | % I2

where A > 0.

Solution:
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Exercise 2: Proximal Gradient
Consider the following convex optimization problem
min F'(x) (2)
X

stxeD

where F' : R® — R is a proper convex function and D C R" is a nonempty convex set
with D C dom F'. Suppose that the problem (2) is solvable, and we do not require the
differentiability of F.

1. If x € int (dom F') N D and there exists a g € 0F(x) such that
(8y—x)>0,VyeD,
show that x is optimal.
2. Please give an example to show that 9F(x) can be empty.

3. Suppose f : R" — R is twice continuously differentiable, and the Hessian matrix of f
is H(x).

(a) Let Amax(x) represents the largest eigenvalue of H(x). If
Amax(X) < L, Vx e R",

please show that:
1(¥) < 76+ (V1) —x) + 2y x|

(b) Let Amin(x) represent the smallest eigenvalue of H(x). If f is strongly convex
with convexity parameter p > 0, please show that:

2 < )\min(x)7 Vx € R™.

In many cases, the function F' can be decomposed into F = f + g, where g : R” — R is
a continuous convex function, and f : R™ — R is a convex and continuously differentiable
function, whose gradient is Lipschitz continuous with the constant L. We can use ISTA,

which has been introduced in Lecture 08, to find m]iRn F(x).
xcR™

4. For a given point x., we consider the following quadratic approximation of F"
L 2
Qx;xc) = fxe) + (VF(xe), x = %) + S [[x = xc[I” + ().
Please show that it always admits a unique minimizer

p(x.) =argmin Q(x; X.).
xER™
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5. If we use ISTA to solve the Lasso problem, show that

A
Zi—i-Z,
w =40,
A
Zi_57
2 T
Wherez:wk—EX (Xwi —y).

Solution:

ifz; <

1f|2’1| S Z,

if z; >

Ea

9
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Exercise 3: [1] ISTA with Backtracking

Suppose that we would like to apply ISTA to solve the convex optimization problem

min F(x) = f(x) + g(x), (3)
x€Rn?
where g : R” — R is a continuous convex function, and f : R® — R is a convex and contin-
uously differentiable function, whose gradient is Lipschitz continuous with the constant L.
We assume that Problem (3) is solvable, i.e., there exists x* such that

F(x*) = F* = min F(x).
(x") min F(x)
In practice, however, a possible drawback of ISTA is that the Lipschitz constant L is not
always known or computable. For instance, if f(x) = ||Ax —b||3, the Lipschitz constant for
V f depends on )\maX(ATA), which is not always easily computable for large-scale problems.
To tackle this problem, we always equip ISTA with the backtracking stepsize rule as shown

in Algorithm 1.
Note that in Algorithm 1, @7, and py, are defined as

Qulxxe) = Fke) + (V00 % = xe) + b — el + 9(x)

pr(Xc) = argmin Q1 (x; X.).
xER™

Algorithm 1 ISTA with Backtracking
1: Input: An initial point xq, an initial constant Ly > 0, a threshold n > 1, and k£ = 1.
2: while the termination condition does not hold do
3:  Find the smallest non-negative integer ¢;, such that with L= N Ly

F(p;(xk-1)) < Qj(p7(Xp—1); Xk—1)- (4)

4 Ly + n'* Ly_q, xp, < pr,, (Xp—1),
5: k+—k+ 1,
6: end while

1. Show that the sequence {F(xy)} produced by Algorithm 1 is non-increasing.

2. Show that Inequality (4) is satisfied for any L > L, where L is the Lipschitz constant
of V£, thus showing that for Algorithm 1 one has Ly < nL for every k > 1.

3. Let {xx} be the sequence generated by Algorithm 1. Show that for any & > 1 we have

L X2
F(xp) — F(x*) < w V' € argmin F(x).
X n
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The above result means that the number of iterations of Algorithm 1 required to
obtain an e-optimal solution, i.e., an X such that F(x) — F'(x*) < ¢, is at most

nL|jxo — x*[|3
2¢ '

Solution: [ |
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Exercise 4: Programming Exercise: Naive Bayes Classifier

We provide you with a data set that contains spam and non-spam emails (“hw5_ nb.zip”).
Please use the Naive Bayes Classifier to detect the spam emails. Finish the following
exercises by programming. You can use your favorite programming language.

1.

2.

Remove all the tokens that contain non-alphabetic characters.
Train the Naive Bayes Classifier on the training set according to Algorithm 2.

. Test the Naive Bayes Classifier on the test set according to Algorithm 3. You may
encounter a problem that the likelihood probabilities you calculate approach 0. How
do you deal with this problem?

. Compute the confusion matrix, accuracy, precision, recall, and F-score.

. Without the Laplace smoothing technique, complete the steps again.

Algorithm 2 Training Naive Bayes Classifier

Input: The training set with the labels D = {(x, yi)}.

1: V < the set of distinct words and other tokens found in D
2: for each target value c in the labels set C do

3: D, < the training samples whose labels are ¢

£ Ple)« 2

5. T < a single document by concatenating all training samples in D,
6:  ne < |Te]

7. for each word wy in the vocabulary V do

8 Ne,k < the number of times the word wy occurs in Tt

9 P(wg|c) = Z;’im

10: end for

11: end for

Algorithm 3 Testing Naive Bayes Classifier

Input: An email x. Let x; be the " token in x . Z = 0.

1:

2
3
4:
5
6

fori=1,...,|x| do
if Jwy, € V such that wy, = z; then
I+ TUig
end if

: end for
. predict the label of x by

= argmaxP HP wy, |¢)
1€l

Solution:
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Exercise 5: Logistic Regression and Newton’s Method
Given the training data D = {(x;, v;)}?,, where x; € R? and y; € {0,1}. Let

It ={izienly =1},

1~ ={i:i€[n],y; =0},
where [n] = {1,2,...,n}. We assume that Z+ and Z~ are not empty.
Then, we can formulate the logistic regression of the form.

n

mn 209 = =15 (e () + (090 (Tt ) ) ©

i=1

where w € R4*! is the model parameter to be estimated and X, = (1,x,).

1. (a) Suppose that the training data is strictly linearly separable, that is, there exists
w € R such that

Show that problem (5) has no solution.

(b) Suppose that the training data is NOT linearly separable, that is, for all w €
R9*1 there exists i € [n] such that

(w,%;) <0,ifi e T,
or

(w,X;) >0,ifi e .
Show that problem (5) always admits a solution.

2. Suppose that X = (X;,%z,...,%,)| € R™ (@) and rank(X) = d + 1. Show that
L(w) is strictly convex, i.e., for all wi # wa,

L{twy + (1 — t)ws) < tL(wy) + (1 — t)L(w2), ¥t € (0,1).

Solution: ]
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Exercise 6: Convergence of Stochastic Gradient Descent for Convex Function

Consider an optimization problem

min F'(w) = %Z fi(w), (6)

w
=1

where the objective function F' is continuously differentiable and strongly convex with con-
vexity parameter p > 0. Suppose that the gradient of F', i.e., VF', is Lipschitz continuous
with Lipschitz constant L, and F' can attain it minimum F™* at w*. We use the stochastic
gradient descent(SGD) algorithm introduced in Lecture 12 to solve the problem (6). Let
the solution sequence generated by SGD be (wy).

1. Please show that Yw € dom F', the following inequality
1
F(w) - F* < EHVF(W)H2 (7)

holds, and interpret the role of strong convexity based on this.

2. Recall that with a fixed stepsize « € [0, ﬁ] where Mg (as well as the following M)
is a parameter regarding the upper bound of the variance of stochastic gradient in
SGD, the sequence (E[F(wy)]) generated by SGD converges to a neighborhood of F™*
with a linear rate, i.e,

LM
— [0
2u

linear LM
) a.
24

Beye, 1 [P(wi) = P < G+ (1= o) (F(wo) = F*

(a) In practice, for the same problem, SGD enjoys less time cost but more iteration
steps than gradient descent methods and may suffer from non-convergence. As
a trade-off between SGD and gradent descent approaches, consider using mini-
batch samples to estimate the full gradient. Taking k** iteration as an example,
instead of picking a single sample, we randomly select a subset Sy of the sample
indices to compute the update direction

g (&k) = Sl| > Vfi(wr)

1€Sy

where £ is the selected samples. For simplicity, suppose that the mini-batches
in all iterations are of constant size, i.e., |Si| = n,, and the stepsize « is fixed.
Please show that for mini-batch SGD, there holds

M LM inear LM
a+ (1 — pa)*(F(wo) — F* finea

Ee.. [F _FY < _
€o:nr I (WE) ] < . S 2 ®

Moreover, point out the advantage of mini-batch SGD compared to SGD in terms
of the number of the iteration step.

(b) The expected optimality gap of SGD, i.e., E¢.¢, , [F(wy) — F™*], fails to converge
to zero. In order to alleviate this problem, we consider a strategy of diminishing
stepsize ay. Suppose that the SGD method is run with a stepsize sequence (o)
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1

such that, for all £ € N,ay, = % for some (3 > % and v > 0 satisfying ap <

IMg"
Please show that Vk € N, we have
N T
ey o [F(w) = 1] < .
2
where 7 = max{%,w(F(wo) — F*)}.
Solution: |

10
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Exercise 7: Programming Exercise: Logistic Regression

We provide you with a dataset of handwritten digits called MNIST!, that contains a training
set of 60000 examples and a test set of 10000 examples (“hw5_lr.zip”). Each image in this
dataset has 28 x 28 pixels and the associated label is the handwritten digit—that is, an
integer from the set {0, 1,--- ,9}—in the image. In this exercise, you need to build a logistic
regression classifier to predict if a given image has the handwritten digit 6 in it or not. You
can use your favorite programming language to finish this exercise.

1. Normalize the data matrix and please find a Lipschitz constant of VL(w), where L(w)
is the objective function of the logistic regression after normalizing and w is the model
parameter to be estimated.

2. (a) Use the gradient descent algorithm (GD), which is a special case of ISTA intro-
duced in Lecture 09, and SGD to train the logistic regression classifier on the
training set, respectively. Evaluate the classification accuracy on the training
set after each iteration. Stop the iteration when Accuracy > 95% or total steps
are more than 2000. Please plot the accuracy of these two classifiers (the one
trained by GD and the other trained by SGD) versus the iteration step on one
graph.

(b) Compare the total iteration counts and the total time cost of the two methods
(GD and SGD), respectively. Please report your result.

(¢) Compare the confusion matrix, precision, recall and F1 score of the two classifiers
the one trained by GD and the other trained by SGD). Please report your result.
y Yy y

3. (a) The order of data samples affects the convergence of SGD. Implement and com-
pare the following sampling strategies for training the logistic regression classi-
fier(other experimental setup details is in line with 2.(a)):

e Random Sampling without Replacement: At the start of each epoch, shuffle
the entire training set and perform parameter updates by iterating through
all samples sequentially.

e Random Sampling with Replacement: At each iteration, uniformly sample
a single data point from the full training set to update parameters.

e Mini-batch Sampling: In each epoch, partition the training set into fixed-size
sequential mini-batches and perform updates iteratively.

(b) Please plot the accuracy of these classifiers versus the iteration step on one graph.
Compare the convergence speeds and stability of these classifiers. Please report
your result.

Solution: [ |

Tt was created by the National Institute of Standards and Technology (NIST).
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