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Notice, to get the full credits, please present your solutions step by step.

Exercise 1: Convex Functions

1. Please show that the following functions are convex.

(a) f(x) =
∑k

i=1 x[i] on dom f = Rn, where 1 ≤ k ≤ n and x[i] denotes the ith

largest component of x.
(b) The negative entropy, i.e.,

f(p) =

n∑
i=1

pi log pi

on dom f = {p ∈ Rn : 0 < pi ≤ 1,
∑n

i=1 pi = 1}, where pi denotes the ith

component of p.
(c) The p-norms, i.e., f(X) = ∥X∥p on dom f = Rm×n.
(d) The function f(X) = − log detX on dom f = Sn

++

2. Please show that a function f is convex if and only if dom f is convex and its re-
striction to any line intersecting its domain is convex, i.e., for any x0 ∈ dom f and
v ∈ Rn, the function

g(t) = f(x0 + tv)

is convex over its domain dom g = {t ∈ R : x0 + tv ∈ dom f}.
(Hint: you may prove the sufficiency by contradiction.)

3. (Optional) Please show that a continuously differentiable function f is strongly convex
with parameter µ > 0 if and only if

f(y) ≥ f(x) + ⟨∇f(x),y − x⟩+ µ

2
∥y − x∥22, ∀x,y ∈ Rn.

4. (Optional) Suppose that f is twice continuously differentiable and strongly convex
with parameter µ > 0. Please show that µ ≤ λmin(∇2f(x)) for any x ∈ Rn, where
λmin(∇2f(x)) is the smallest eigenvalue of ∇2f(x).

5. Suppose that f : Rn → R is twice continuously differentiable, and the gradient of f is
Lipschitz continuous, i.e.,

∥∇f(x)−∇f(y)∥2 ≤ L∥x− y∥2, ∀x,y ∈ Rn,

where L > 0 is the Lipschitz constant. Please show that λmax(∇2f(x)) ≤ L for any
x ∈ Rn, where λmax(∇2f(x)) is the largest eigenvalue of ∇2f(x).
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Exercise 2: Operations that Preserve Convexity

1. Let f : Rm → (−∞,+∞] be a given convex function, A ∈ Rm×n and b ∈ Rm. Please
show that

F (x) = f(Ax+ b), x ∈ Rn.

is convex.

2. Let fi : Rn → (−∞,+∞] , i = 1, . . . ,m, be given convex functions. Please show that

F (x) =

m∑
i=1

wifi(x)

is convex, where wi ≥ 0, i = 1, . . . ,m.

3. Let fi : Rn → (−∞,+∞] be given convex functions for i ∈ I, where I is an arbitrary
index set. Please show that the supremum

F (x) = sup
i∈I

fi(x)

is convex.

4. (Optional) Let A ∈ Rn×m,x0 ∈ Rn. The restriction of f : Rn → R to the affine set
{Az+ x0|z ∈ Rm} is defined as the function F : Rm → R with

F (z) = f(Az+ x0)

on dom F = {z|Az+ x0 ∈ dom f}. Suppose f is twice differentiable with a convex
domain.[1]

(a) Show that F is convex if and only if for all z ∈ dom F , we have

A⊤∇2f(Az+ x0)A ⪰ 0.

(b) Suppose B ∈ Rp×n is a matrix whose nullspace is equal to the range of A, i.e.,
AB = 0 and rank(B) = n−rank(A). Show that F is convex if for all z ∈ dom F ,
there exists a λ ∈ R such that

∇2f(Az+ x0) + λB⊤B ⪰ 0.

(Hint: you can use the result as follows. If C ∈ Sn and D ∈ Rp×n, then
x⊤Cx ≥ 0 for all x ∈ N (D) if there exists a λ such that C+ λD⊤D ⪰ 0.)

2
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Exercise 3: Subdifferentials

Calculation of subdifferentials (you need to finish at least four of the problems).

1. Let H ⊂ Rn be a hyperplane. The extended-value extension of its indicator function
IH is

ĨH(x) =
{
0, x ∈ H,

∞, x ̸∈ H.

Find ∂ĨH(x).

2. Let f(x) = exp ∥x∥1, x ∈ Rn. Find ∂f(x).

3. For x ∈ Rn, let x[i] be the ith largest component of x. Find the subdifferentials of

f(x) =
k∑

i=1

x[i].

4. Let f(x) = ∥x∥∞, x ∈ Rn. Find ∂f(x).

5. Let f(X) = max
1≤i≤n

|λi|, where X ∈ Sn and λ1, . . . , λn are the eigenvalues of X. Find
∂f(X).
(Hint: you can refer to Example 7 in Lec06.)

6. (Optional) Let

f(x) =
(

k∑
i=1

x2i

) 1
2

+

(
n∑

i=k+1

x2i

) 1
2

, x ∈ Rn,

where 1 ≤ k ≤ n− 1. Find ∂f(x).

7. (Optional) Let f(X) = ∥X∥∗ be the trace norm of X ∈ Rm×n. Find ∂f(X).
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Exercise 4: Convex Functions and Optimization

Consider the problem

min
x∈Rn

f(x), (1)

where f : Rn → R is continuously differentiable and convex, and dom f is closed.

1. Please show that the α-sublevel set of f , i.e., Cα = {x ∈ dom f : f(x) ≤ α} is closed.

2. Please give an example to show that Problem (1) may be unsolvable even if f is
strictly convex.

3. Suppose that f can attain its minimum. Please show that the optimal set C = {y :
f(y) = minx f(x)} is closed and convex. Does this property still hold if dom f is not
closed?

4. Suppose that f is strongly convex with parameter µ > 0. Please show that Problem
(1) admits a unique solution.

5. Consider the problem

min
w∈Rn

f(w) = ∥Xw − y∥2 + λ

2
∥w∥2, (2)

where X ∈ Rm×n and y ∈ Rm

(a) Please show that Problem (2) admits a unique solution.
(b) if ŵ = argmin

w
f(w), try to show that

⟨∇f(w), z−w⟩ = 0, ∀ z ∈ Rn,

and find the supporting hyperplane of epi f at the point (w, f(w)) using the
gradient ∇f(w).
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