Introduction to Machine Learning

Fall 2025

University of Science and Technology of China

Lecturer: Jie Wang

Posted: Oct. 28, 2025

Homework 3

Due: Nov. 5, 2025

Notice, to get the full credits, please present your solutions step by step.

Exercise 1: Affine Sets

- 1. (a) Let $U \subset \mathbb{R}^n$ with $\mathbf{0} \in U$. Show that U is an affine set if and only if U is a (linear) subspace of \mathbb{R}^n .
 - (b) Let $U \subset \mathbb{R}^n$ be a nonempty affine set. Show that there exists a *unique* subspace $V \subset \mathbb{R}^n$ (called the direction space of U) such that for every $\mathbf{u} \in U$,

$$U = \mathbf{u} + V$$
.

Equivalently, for any fixed $\mathbf{u}_0 \in U$ one may take $V = U - \mathbf{u}_0$, and this V does not depend on the choice of \mathbf{u}_0 .

- 2. (Linear equations and affine sets)
 - (a) Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$. The solution set $C = \{\mathbf{x} : \mathbf{A}\mathbf{x} = \mathbf{b}\}$ is an affine set.
 - (b) Any affine set can be represented as the solution set of a system of linear equations. That is, for any affine set $U \subset \mathbb{R}^n$, there exists $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$ such that the solution set $C = \{\mathbf{x} : \mathbf{A}\mathbf{x} = \mathbf{b}\} = U$, where $m \leq n$.

Hint: just think about how to use some kind of base vectors to represent an affine set.

- 3. Let $D = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{H}\mathbf{x} = \mathbf{d} \}$ be an affine set in \mathbb{R}^n , where $\mathbf{H} \in \mathbb{R}^{m \times n}$ has full row rank m, and $\mathbf{d} \in \mathbb{R}^m$.
 - (a) Show that the projection $\mathbf{p} = \mathbf{argmin}_{\mathbf{x} \in D} ||\mathbf{y} \mathbf{x}||_2^2$ of a point $\mathbf{y} \in \mathbb{R}^n$ onto D is given by

$$\mathbf{p} = \mathbf{y} - \mathbf{H}^{\top} (\mathbf{H} \mathbf{H}^{\top})^{-1} (\mathbf{H} \mathbf{y} - \mathbf{d}).$$

(b) In \mathbb{R}^2 , let $D = \{\mathbf{x} : x_1 - x_2 = 1\}$ and $\mathbf{y} = (0, 2)$. Compute the projection \mathbf{p} of \mathbf{y} onto D and draw a sketch showing $D, \mathbf{y}, \mathbf{p}$, and the residual vector $\mathbf{y} - \mathbf{p}$.

Exercise 2: Convex Sets

- 1. Let $C \subset \mathbb{R}^n$ be a nonempty convex set. Please show the following statements. Some operations that preserve convexity.
 - (a) Both $\mathbf{cl}\ C$ and $\mathbf{int}\ C$ are convex.
 - (b) The intersection $\bigcap_{i \in I} C_i$ of any collection $\{C_i : i \in \mathcal{I}\}$ of convex sets is convex.
 - (c) The set $\{\mathbf{y} \in \mathbb{R}^m : \mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{a}, \mathbf{x} \in C\}$ is convex, where $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{a} \in \mathbb{R}^m$.
 - (d) The set $\{\mathbf{y} \in \mathbb{R}^m : \mathbf{x} = \mathbf{B}\mathbf{y} + \mathbf{b}, \mathbf{x} \in C\}$ is convex, where $\mathbf{B} \in \mathbb{R}^{n \times m}$ and $\mathbf{b} \in \mathbb{R}^n$.
- 2. Please find the interior and relative interior of the following convex sets (you don't need to prove them).
 - (a) $\{\mathbf{x} \in \mathbb{R}^3 : x_1^2 + x_2^2 < 1, x_3 = 0\} \subset \mathbb{R}^3.$
 - (b) $\{\mathbf{A} \in S_{++}^n : \operatorname{Tr}(\mathbf{A}) = 1\} \subset \mathbb{R}^{n \times n}$.
 - (c) $\{ \mathbf{A} \in S_{++}^n : \text{Tr}(\mathbf{A}) = 1 \} \subset S^n$.
 - (d) (Optional) $\{\mathbf{A} \in S_{++}^n : \text{Tr}(\mathbf{A}) \le 1\} \subset \mathbb{R}^{n \times n}$.

Exercise 3: Farkas' Lemma

Let $\mathbf{A} = (\mathbf{a}_1, \dots, \mathbf{a}_n) \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$. Consider a set $A = {\mathbf{a}_1, \dots, \mathbf{a}_n}$. Its conic hull **cone** A is defined as

$$\mathbf{cone}\,A = \{\sum_{i=1}^n \alpha_i \mathbf{a}_i : \alpha_i \ge 0, \mathbf{a}_i \in A\}.$$

- 1. Please show that $\mathbf{cone} A$ is closed and convex.
- 2. If $\mathbf{b} \in \mathbf{cone} A$, please show that there exists $\mathbf{x} \in \mathbb{R}^n$ such that $\mathbf{A}\mathbf{x} = \mathbf{b}$ and $\mathbf{x} \ge \mathbf{0}$.
- 3. If $\mathbf{b} \notin \mathbf{cone} A$, use separation theorems to show that there exists $\mathbf{y} \in \mathbb{R}^m$, such that $\mathbf{A}^{\top} \mathbf{y} \geq \mathbf{0}$ and $\mathbf{b}^{\top} \mathbf{y} < 0$.
- 4. Now you can prove Farkas' Lemma: for given $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$, one and only one of the two statements hold:
 - $\exists \mathbf{x} \in \mathbb{R}^n$, $\mathbf{A}\mathbf{x} = \mathbf{b}$ and $\mathbf{x} \geq \mathbf{0}$.
 - $\exists \mathbf{y} \in \mathbb{R}^m$, $\mathbf{A}^{\top} \mathbf{y} \geq \mathbf{0}$ and $\mathbf{b}^{\top} \mathbf{y} < 0$.

Exercise 4: Relative Interior and Closure

- 1. Let $C \subset \mathbb{R}^n$ be a nonempty convex set.
 - (a) Let $\mathbf{x}_0 \in C$. Please show the following statements. The point $\mathbf{x}_0 \in \mathbf{relint}\ C$ if and only if there exists r > 0 such that $\mathbf{x}_0 + r\mathbf{v} \in C$ for any $\mathbf{v} \in \mathbf{aff}\ C \mathbf{x}_0$ and $\|\mathbf{v}\|_2 \leq 1$.
 - (b) Please show that $\mathbf{x} \in \mathbf{relint} \ C$ if and only if for any $\mathbf{y} \in C$, there exists $\gamma > 0$ such that $\mathbf{x} + \gamma(\mathbf{x} \mathbf{y}) \in C$.

Hint: the result in Question (a) may be useful.

(c) Please show that if $\mathbf{x} \in \mathbf{relint} \ C$, $\mathbf{y} \in \mathbf{cl} \ C$, then $\lambda \mathbf{x} + (1 - \lambda)\mathbf{y} \in \mathbf{relint} \ C$ for $\lambda \in (0, 1]$.

Hint: there exists r > 0, such that $B(\mathbf{x}, r) \cap \mathbf{aff}\ C \subset \mathbf{relint}\ C$. Then consider the convex hull of $(B(\mathbf{x}, r) \cap \mathbf{aff}\ C) \cup \{\mathbf{y}\}$.

- 2. (Optional) Let $C \subset \mathbb{R}^n$ be a convex set. We already know that **cl** C and **int** C are convex. Please show the following statements.
 - (a) $\mathbf{cl}(\mathbf{int}\ C) = \mathbf{cl}\ C$, provided $\mathbf{int}\ C \neq \emptyset$.
 - (b) int (cl C) = int C, provided int $C \neq \emptyset$.

Exercise 5: Supporting Hyperplane

- 1. From the lecture, we know that there exsits supporting hyperplanes at the boundary point of a convex set. Please solve the following questions.
 - (a) Express the closed convex set $\{\mathbf{x} \in \mathbb{R}^2_+ : x_1x_2 \geq 1\}$ as an intersection of halfspaces.
 - (b) Let $C = \{\mathbf{x} \in \mathbb{R}^n : \|\mathbf{x}\|_{\infty} \le 1\}$, the ∞ -norm unit ball in \mathbb{R}^n , and let $\hat{\mathbf{x}}$ be a point in the boundary of C. Identify the supporting hyperplanes of C at $\hat{\mathbf{x}}$ explicitly. (The ∞ -norm of a point $\mathbf{x} \in \mathbb{R}^n$ is defined as $\max_{1 \le i \le n} |x_i|$.)
- 2. The set of separating hyperplanes: Suppose that C and D are disjoint subsets of \mathbb{R}^n (C and D may **not** be the convex sets). Consider the set of $(\mathbf{a}, b) \in \mathbb{R}^{n+1}$ for which $\mathbf{a}^T \mathbf{x} \leq b$ for all $\mathbf{x} \in C$, and $\mathbf{a}^T \mathbf{x} \geq b$ for all $\mathbf{x} \in D$. Show that this set is a convex cone (if there is no hyperplane that separates C and D, the set becomes $\{(\mathbf{0}, 0)\}$).
- 3. On the linear space of symmetric $n \times n$ matrices S^n , we can define the standard inner product $\operatorname{tr}(XY) = \sum_{i,j=1}^n X_{ij} Y_{ij}$. Show that we can express the positive semi-definite cone S^n_+ as an intersection of halfspaces. Specifically, for $X,Y \in S^n$,

$$\operatorname{tr}(XY) \ge 0$$
 for all $X \ge 0 \Leftrightarrow Y \ge 0$.

Exercise 6: Minkowski Sums

Let $C, D \subset \mathbb{R}^n$ be convex sets. Define their Minkowski sum as

$$C + D = \{x + y : x \in C, y \in D\}.$$

- 1. For each of the following statements, determine if it is **True** or **False**. If true, provide a proof. If false, provide a counterexample.
 - (a) C + D is a convex set.
 - (b) (Optional) relint (C + D) =relint C +relint D.
 - (c) cl(C + D) = cl(C + cl(D))
- 2. (**Part of Minkowski-Weyl Theorem**) A polyhedron *P* is the intersection of finitely many halfspaces:

$$P = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} \le \mathbf{b} \} \tag{1}$$

where $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$.

Show that for any polyhedron $P \subset \mathbb{R}^n$, it can be expressed as the Minkowski sum of a finite set of points and a finite set of directions, i.e., there exist finite sets $V = \{v_1, ..., v_k\}$ and $W = \{w_1, ..., w_l\}$ s.t.

$$P = \mathbf{conv}\ V + \mathbf{cone}\ W = \bigg\{\sum_{i=1}^k \lambda_i v_i + \sum_{j=1}^l \mu_j w_j : \lambda_i \geq 0, \mu_j \geq 0, \sum_{i=1}^k \lambda_i = 1\bigg\}.$$

Hint: Lift the polyhedron to a cone in \mathbb{R}^{n+1} by introducing a homogenizing variable t, then use the definition of polyhedron (1) in \mathbb{R}^{n+1} .

References