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Notice, to get the full credits, please present your solutions step by step.

Exercise 1: Projection to a Function Space

1. Suppose X and Y are both random variables defined in the same sample space Ω with
finite second-order moment, i.e. E[X2],E[Y 2] < ∞.

(a) Let L2(Ω) = {Z : Ω → R | E[Z2] < ∞} be the set of random variables with finite
second-order moment. Please show that L2(Ω) is a linear space, and ⟨X,Y ⟩ :=
E[XY ] defines an inner product in L2(Ω). Then find the projection of Y on the
subspace of L2(Ω) consisting of all constant variables.

(b) Please find a real constant ĉ, such that

ĉ = argmin
c∈R

E[(Y − c)2].

[Hint: you can solve it by completing the square.]
(c) Please find the necessary and sufficient condition where minc∈R E[(Y − c)2] =

E[Y 2]. Then give it a geometric interpretation using inner product and projec-
tion.

2. Suppose X and Y are both random variables defined in the same sample space Ω and
all the expectations exist in this problem. Consider the problem

min
f :R→R

E[(f(X)− Y )2].

(a) Please solve the above problem by completing the square.
(b) We let C(X) denote the subspace {f(X) | f(·) : R → R,E[f(X)2] < ∞} of

L2(Ω). Please show that the solution of the above problem is the projection of
Y on C(X).

(c) Please show that question 1 is a special case of question 2. Please give a geometric
interpretation of conditional expectation.
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Exercise 2: Weighted Least Squares

Consider a dataset D = {(xi, yi)}ni=1 where xi ∈ RD and yi ∈ R. Let x̄i = (1, xi,1, . . . , xi,D)
⊤

and define the design matrix

X =


x̄⊤
1

x̄⊤
2
...
x̄⊤
n

 =


1 x1,1 · · · x1,D
1 x2,1 · · · x2,D
...

... . . . ...
1 xn,1 · · · xn,D

 ∈ Rn×(D+1).

Let y = (y1, . . . , yn)
⊤. Given positive weights wi > 0, define W = diag(w1, . . . , wn) and

W1/2 = diag(
√
w1, . . . ,

√
wn).

1. Consider the weighted least squares (WLS) objective

LWLS(w) =
1

n

n∑
i=1

wi (yi − x̄⊤
i w)2 =

1

n
∥W1/2(y −Xw)∥22.

Derive the first–order optimality condition and show that, if X⊤WX is invertible,

ŵWLS = (X⊤WX)−1X⊤Wy.

2. (Weighted projection) Recall that the Euclidean (orthogonal) projection of x ∈ Rn

onto C(A), which we introduced in Homework 1, is

P
(2)
A (x) := argmin

z∈C(A)
∥x− z∥2.

(a) Show that, in general, the matrix

PW := X (X⊤WX)−1X⊤W

is not the Euclidean orthogonal projector onto C(X) (typically P⊤
W ̸= PW unless

W = I), although P2
W = PW .

(b) Define the W -norm ∥u∥W :=
√
u⊤Wu and the W -inner product ⟨u,v⟩W :=

u⊤Wv. Show that

P
(W )
X (y) := argmin

z∈C(X)
∥y − z∥W = PWy,

and that PW is the W -orthogonal projector: P2
W = PW and P⊤

WW = WPW .
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Exercise 3: Multicollinearity

Consider the linear regression problem formulated as below:

y = Xw + e,E(e) = 0,Cov(e) = σ2In,

where y = (y1, . . . , yn)
⊤ and X ∈ Rn×p. Suppose that X⊤X is invertible, then ŵ =(

X⊤X
)−1

X⊤y is the least squares estimator of w.

1. Recall that the covariance matrix of p-dimensional random vectors is defined as

Cov(ŵ) = E[(ŵ − E(ŵ))(ŵ − E(ŵ))⊤].

Please show that

(a) E(ŵ) = w;
(b) Cov(ŵ) = σ2

(
X⊤X

)−1.

2. We usually measure the quality of an estimator by mean squared error (MSE). The
mean squared error (MSE) of estimator ŵ is defined as

MSE(ŵ) = E[∥ŵ −w∥2].

Please derive that MSE can be decomposed into the variance of the estimator and the
squared bias of the estimator, i.e.,

MSE(ŵ) = trCov(ŵ) + ∥Eŵ −w∥2

=

p∑
i=1

Var(ŵi) +

p∑
i=1

(Eŵi − wi)
2.

3. Please show that

MSE(ŵ) = σ2
p∑

i=1

1

λi
,

where λ1, λ2, . . . , λp are the eigenvalues of X⊤X.

4. What would happen if there exists an eigenvalue λk ≈ 0?
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Exercise 4: Regularized least squares

Suppose that X ∈ Rn×d.

1. Please show that X⊤X is always positive semi-definite. Moreover, X⊤X is positive
definite if and only if x1,x2, . . . ,xd are linearly independent.

2. Please show that X⊤X + λI is always invertible, where λ > 0 and I ∈ Rd×d is an
identity matrix.

3. (Optional) Consider the regularized least squares linear regression and denote

w∗(λ) = argmin
w

L(w) + λΩ(w),

where L(w) = 1
n∥y −Xw∥22 and Ω(w) = ∥w∥22. For regular parameters 0 < λ1 < λ2,

please show that L(w∗(λ1)) < L(w∗(λ2)) and Ω(w∗(λ1)) > Ω(w∗(λ2)). Explain
intuitively why this holds.
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Exercise 5: Maximum Likelihood with Laplace Noise (L1 Regression)

Consider the linear observation model

bi = a⊤i x+ εi, i = 1, 2, . . . ,m,

where ai ∈ Rd and bi ∈ R are observed. Assume the noises {εi} are i.i.d. and follow the
Laplace distribution with density

p(z) =
1

2λ
exp

(
−|z|

λ

)
, λ > 0.

Let A ∈ Rm×d be the matrix whose i-th row is a⊤i , b = (b1, . . . , bm)⊤, and x ∈ Rd is the
parameter vector to be estimated.

1. Write down the likelihood L(x, λ | A,b) and the log-likelihood logL(x, λ | A,b) (you
may drop additive constants independent of (x, λ)).

2. Show that the maximum likelihood estimator of x solves the L1 regression problem

x̂ ∈ argmin
x∈Rd

m∑
i=1

∣∣ bi − a⊤i x
∣∣. (1)

3. Joint MLE when λ is unknown. In practice, the scale parameter λ is unknown.
Treat both x and λ as unknown parameters.

(a) For a fixed x, maximize the log-likelihood with respect to λ > 0 and derive the
closed form

λ⋆(x) =
1

m

m∑
i=1

∣∣ bi − a⊤i x
∣∣.

(b) Show that the joint MLE reduces to the same L1 problem as Problem (1), i.e.,

(
x̂, λ̂

)
∈ argmin

x∈Rd, λ>0

{
m log(2λ)+ 1

λ

m∑
i=1

∣∣bi−a⊤i x
∣∣} ⇐⇒ x̂ ∈ argmin

x

m∑
i=1

∣∣bi−a⊤i x
∣∣,

with λ̂ = λ⋆(x̂).

4. Optimization form (LP). Show that Problem (1) is equivalent to the linear program

min
x∈Rd, t∈Rm

m∑
i=1

ti s.t. − ti ≤ bi − a⊤i x ≤ ti, ti ≥ 0, i = 1, . . . ,m.
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Exercise 6: Bias-Variance Trade-off (Programming Exercise)

We provide you with L = 100 data sets, each having N = 25 points:

D(l) = {(xn, y(l)n )}Nn=1, l = 1, 2, · · · , L,

where xn are uniformly taken from [−1, 1], and all points (xn, y
(l)
n ) are independently from

the sinusoidal curve h(x) = sin(πx) with an additional disturbance.

1. For each data set D(l), consider fitting a model with 24 Gaussian basis functions

ϕj(x) = e−(x−µj)
2
, µj = 0.2 · (j − 12.5), j = 1, · · · 24

by minimizing the regularized error function

L(l)(w) =
1

2

N∑
n=1

(y(l)n −w⊤ϕ(xn))
2 +

λ

2
w⊤w,

where w ∈ R25 is the parameter, ϕ(x) = (1, ϕ1(x), · · · , ϕ24(x))
⊤ and λ is the regular

coefficient. What’s the closed form of the parameter estimator ŵ(l) for the data set
D(l)?

2. For log10 λ = −10,−5,−1, 1, plot the prediction functions y(l)(x) = fD(l)(x) on [−1, 1]
respectively. For clarity, show only the first 25 fits in the figure for each λ.

3. For log10 λ ∈ [−3, 1], calculate the followings:

ȳ(x) = ED[fD(x)] =
1

L

L∑
l=1

y(l)(x)

(bias)2 = EX [(ED[fD(X)]− h(X))2] =
1

N

N∑
n=1

(ȳ(xn)− h(xn))
2

variance = EX [ED[(fD(x)− ED[fD(x)])
2]] =

1

N

N∑
n=1

1

L

L∑
l=1

(y(l)(xn)− ȳ(xn))
2

Plot the three quantities, (bias)2, variance and (bias)2 + variance in one figure, as the
functions of log10 λ. (Hint: see [1] for an example.)
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