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Lecturer: Jie Wang Homework 2
Posted: Oct. 20, 2025 Due: Oct. 27, 2025

Notice, to get the full credits, please present your solutions step by step.

Exercise 1: Projection to a Function Space

1. Suppose X and Y are both random variables defined in the same sample space ) with
finite second-order moment, i.e. E[X?],E[Y?] < co.

(a) Let L2(Q) = {Z : Q — R | E[Z?] < oo} be the set of random variables with finite
second-order moment. Please show that L?(Q) is a linear space, and (X,Y) :=
E[XY] defines an inner product in L?(Q2). Then find the projection of Y on the
subspace of L?(£2) consisting of all constant variables.

(b) Please find a real constant ¢, such that

¢ = argminE[(Y — ¢)?].
ceR

[Hint: you can solve it by completing the square.]

(c) Please find the necessary and sufficient condition where min.cg E[(Y — ¢)?] =
E[YQ]. Then give it a geometric interpretation using inner product and projec-
tion.

2. Suppose X and Y are both random variables defined in the same sample space {2 and
all the expectations exist in this problem. Consider the problem

min E[(/(X) = Y)?,

(a) Please solve the above problem by completing the square.

(b) We let C(X) denote the subspace {f(X) | f(:) : R — R,E[f(X)?] < oo} of
L?(€)). Please show that the solution of the above problem is the projection of
Y on C(X).

(c) Please show that question 1 is a special case of question 2. Please give a geometric
interpretation of conditional expectation.
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Exercise 2: Weighted Least Squares
Consider a dataset D = {(x;, ;) }i; where x; € RP and y; € R. Let x; = (1, Til,--- ,:U@D)T

and define the design matrix

=T
X1T 1 z11 - @1D
X 1 =z e
X — 2 | _ 2,1 2,D ¢ Rx(D+1)
=T
n 1 Tn1 - Tn,D

Let y = (y1,...,yn)". Given positive weights w; > 0, define W = diag(wy,...,w,) and

W12 = diag(\/w1, . . . , /Wn).

1. Consider the weighted least squares (WLS) objective
1 o 1
Lis(w) = — > wi (y = x] w)* = —[W'/2(y — Xw)|3
=1

Derive the first-order optimality condition and show that, if X T WX is invertible,

wwLs = (XTWX) ' XTWy.

2. (Weighted projection) Recall that the Euclidean (orthogonal) projection of x € R"
onto C(A), which we introduced in Homework 1, is

Pf)(x) = argmin ||x — z|2.
zeC(A)
(a) Show that, in general, the matrix
Py =X (X'"WX)'X'W

is not the Euclidean orthogonal projector onto C(X) (typically PTW # Py unless

W = 1), although P%, = Pyy.
(b) Define the W-norm |jullw := Vu'Wu and the W-inner product (u,v)w :=

u' Wv. Show that

w .
PY")(y) := argmin |y — z|w = Pwy,
zeC(X)

and that Py is the W-orthogonal projector: P%V = Py and PJVW = WPy.
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Exercise 3: Multicollinearity
Consider the linear regression problem formulated as below:
y = Xw +e,E(e) = 0,Cov(e) = 0°I,,

where y = (yl,...,yn)T and X € R™P. Suppose that XX is invertible, then w =
(XTX)_1 X Ty is the least squares estimator of w.

1. Recall that the covariance matrix of p-dimensional random vectors is defined as
Cov(w) = E[(W — E(W))(% — E(W))T].
Please show that
(a) E(w) = w;
(b) Cov(Ww) =2 (XTX) .

2. We usually measure the quality of an estimator by mean squared error (MSE). The
mean squared error (MSE) of estimator w is defined as

MSE(W) = E[|[W — w|].

Please derive that MSE can be decomposed into the variance of the estimator and the
squared bias of the estimator, i.e.,

MSE(W) = trCov(w) + ||[Ew — w]|?

p p
= Var(i;) + Y _(Bib; — w;)?.
=1 =1

3. Please show that

P
1
AN 2
MSE(W) = o Z X
i=1
where A1, Mg, ..., A\, are the eigenvalues of XX,

4. What would happen if there exists an eigenvalue A\, ~ 07
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Exercise 4: Regularized least squares

Suppose that X € R"*4,

1. Please show that XX is always positive semi-definite. Moreover, X "X is positive
definite if and only if x, X2, ...,x4 are linearly independent.

2. Please show that XX + A is always invertible, where A > 0 and I € R%*9 is an
identity matrix.

3. (Optional) Consider the regularized least squares linear regression and denote

w*(\) = argmin L(w) + A\Q(w),

w

where L(w) = L|ly — Xw/||3 and Q(w) = ||w||3. For regular parameters 0 < A\; < Ao,

please show that L(w*(\;)) < L(w*(A\2)) and Q(w*(A1)) > Q(w*(A2)). Explain
intuitively why this holds.
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Exercise 5: Maximum Likelihood with Laplace Noise (L1 Regression)

Consider the linear observation model
bizaiTx—i—si, 1=1,2,...,m,

where a; € R? and b; € R are observed. Assume the noises {e;} are i.i.d. and follow the
Laplace distribution with density

Let A € R™*? be the matrix whose i-th row is a;r, b = (b1,...,by)", and x € R? is the
parameter vector to be estimated.

1. Write down the likelihood L(x, A | A, b) and the log-likelihood log L(x, A | A, b) (you
may drop additive constants independent of (x, \)).

2. Show that the maximum likelihood estimator of x solves the LI regression problem

m
X € argmin Z | b; — a, x |. (1)
xeR? i=1

3. Joint MLE when )\ is unknown. In practice, the scale parameter A is unknown.
Treat both x and A as unknown parameters.

(a) For a fixed x, maximize the log-likelihood with respect to A > 0 and derive the

closed form
. B 1 m o
)\(x)—igl‘bl aix’.

(b) Show that the joint MLE reduces to the same L1 problem as Problem (1), i.e.,
N m m
(5(, )\) € argmin {mlog(Q)\H—% Z !bi—ag—x‘} — X€ argminz ‘bi—a;rx‘,
x€ER, A>0 i—1 x i=1
with A = A*(X).
4. Optimization form (LP). Show that Problem (1) is equivalent to the linear program
m
min Zti s.t. —tigbi—a;xgti, t; >0, 1=1,...,m.
i=1

x€R?, teR™ =
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Exercise 6: Bias-Variance Trade-off (Programming Exercise)

We provide you with L = 100 data sets, each having N = 25 points:
l)_{($n7 (l)) n=1> l:1>27 aLv
O]

where x,, are uniformly taken from [—1, 1], and all points (x,,yn’) are independently from
the sinusoidal curve h(z) = sin(7z) with an additional disturbance.

1. For each data set D(l), consider fitting a model with 24 Gaussian basis functions
dj(x) = e (@=1)? pj=02-(j—12.5), j=1,---24

by minimizing the regularized error function

1 N

IS W0 — W d(aa))? + 2w w,

0] _
LY (w) 5 5

n=1

where w € R?? is the parameter, ¢(z) = (1, ¢1(x), -, ¢p24(x))" and ) is the regular
coefficient. What’s the closed form of the parameter estimator w®) for the data set
DW?

2. For log;y A = —10, =5, —1, 1, plot the prediction functions y® (z) = fpw(x) on [—1,1]
respectively. For clarity, show only the first 25 fits in the figure for each A.

3. For logg A € [—3,1], calculate the followings:

() = Eplfp(a)] = 1 >y (@)
=1
N
(bias)? = Ex[(Eplfo(X)] ~ A(X)Y] = 1 3 (@(an) — h(an))?
n_ll N 1 L
variance = Ex [Ep[(fp(x) — Ep[fp(x Z 7 Z y(w,))?
n:l =1

Plot the three quantities, (bias)?, variance and (bias)? + variance in one figure, as the
functions of log;y A. (Hint: see [1] for an example.)
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