Introduction to Machine Learning

Fall 2025

University of Science and Technology of China

Lecturer: Jie Wang

Posted: Sep. 22nd, 2025

Homework 1

Due: Oct. 10th, 2025

Notice, to get the full credits, please present your solutions step by step.

Exercise 1: Limit and Limit Points

- 1. Show that $\{\mathbf{x}_n\}$ in \mathbb{R}^n converges to $\mathbf{x} \in \mathbb{R}^n$ if and only if $\{\mathbf{x}_n\}$ is bounded and has a unique limit point \mathbf{x} .
- 2. (Limit Points of a Set). Let C be a subset of \mathbb{R}^n . A point $\mathbf{x} \in \mathbb{R}^n$ is called a limit point of C if there is a sequence $\{\mathbf{x}_n\}$ in C such that $\mathbf{x}_n \to \mathbf{x}$ and $\mathbf{x}_n \neq \mathbf{x}$ for all positive integers n. If $\mathbf{x} \in C$ and \mathbf{x} is not a limit point of C, then \mathbf{x} is called an isolated point of C. Let C' be the set of limit points of the set C. Please show the following statements.
 - (a) If $C = (0,1) \cup \{2\} \subset \mathbb{R}$, then C' = [0,1] and x = 2 is an isolated point of C.
 - (b) The set C' is closed.

Exercise 2: Norms

In this exercise, we will give some examples of norms and a useful theorem related to norms in **finite** dimensional vector space.

1. l_p norm: The l_p norm is defined by

$$\|\mathbf{x}\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

where $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$ and $p \ge 1$.

- (a) Please show that the l_p norm is a norm.
- (b) Please show that the following equality.

$$\lim_{p \to \infty} \|\mathbf{x}\|_p = \|\mathbf{x}\|_{\infty} = \max_{1 \le i \le n} |x_i|.$$

The l_{∞} norm is defined as above.

- 2. **Operator norms:** Suppose that $\mathbf{A} \in \mathbb{R}^{m \times n}$, which can be viewed as a linear transformation from \mathbb{R}^n to \mathbb{R}^m . Please show the following operator norms' equality.
 - (a) Let $\|\mathbf{A}\|_1 = \sup_{\mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{A}\mathbf{x}\|_1}{\|\mathbf{x}\|_1}$. Please show that

$$\|\mathbf{A}\|_1 = \max_{1 \le j \le n} \sum_{i=1}^m |a_{ij}|.$$

(b) Let $\|\mathbf{A}\|_{\infty} = \sup_{\mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{A}\mathbf{x}\|_{\infty}}{\|\mathbf{x}\|_{\infty}}$. Please show that

$$\|\mathbf{A}\|_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{n} |a_{ij}|.$$

3. (Optional) Dual norm: Let $\|\cdot\|$ be a norm on \mathbb{R}^n . The dual norm of $\|\cdot\|$ is defined by

$$\|\mathbf{x}\|_* = \sup_{\mathbf{y} \in \mathbb{R}^n, \|\mathbf{y}\| \le 1} \mathbf{y}^\top \mathbf{x}.$$

(a) Please show that the dual of the Euclidean norm is the Euclidean norm itself. i.e.,

$$\sup_{\mathbf{y} \in \mathbb{R}^n, \|\mathbf{y}\|_2 \le 1} \mathbf{y}^\top \mathbf{x} = \|\mathbf{x}\|_2.$$

(b) Please show that the dual of the l_1 norm is the l_{∞} norm. i.e.,

$$\sup_{\mathbf{y} \in \mathbb{R}^n, \|\mathbf{y}\|_1 \le 1} \mathbf{y}^\top \mathbf{x} = \|\mathbf{x}\|_{\infty}.$$

2

Exercise 3: Open and Closed Sets

The norm ball $\{ \mathbf{y} \in \mathbb{R}^n : ||\mathbf{y} - \mathbf{x}||_2 < r, \mathbf{x} \in \mathbb{R}^n \}$ is denoted by $B_r(\mathbf{x})$.

- 1. Given a set $C \subset \mathbb{R}^n$, please show the following are equivalent.
 - (a) The set C is closed; that is $\mathbf{cl}\ C = C$.
 - (b) The complement of C is open.
 - (c) If $B_{\epsilon}(\mathbf{x}) \cap C \neq \emptyset$ for every $\epsilon > 0$, then $\mathbf{x} \in C$.
- 2. Given $A \subset \mathbb{R}^n$, a set $C \subset A$ is called open in A if

$$C = \{ \mathbf{x} \in C : B_{\epsilon}(\mathbf{x}) \cap A \subset C \text{ for some } \epsilon > 0 \}.$$

A set C is said to be closed in A if $A \setminus C$ is open in A.

- (a) Let $B = [0,1] \cup \{2\}$. Please show that [0,1] is not an open set in \mathbb{R} , while it is both open and closed in B.
- (b) Please show that a set $C \subset A$ is open in A if and only if $C = A \cap U$, where U is open in \mathbb{R}^n .

Exercise 4: Projection

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{x} \in \mathbb{R}^m$. Define

$$\mathbf{P}_{\mathbf{A}}(\mathbf{x}) = \operatorname*{argmin}_{\mathbf{z} \in \mathbb{R}^m} \{ \|\mathbf{x} - \mathbf{z}\|_2 : \mathbf{z} \in \mathcal{C}(\mathbf{A}) \}.$$

We call $P_{\mathbf{A}}(\mathbf{x})$ the projection of the point \mathbf{x} onto the column space of \mathbf{A} .

- 1. Please show that $\mathbf{P}_{\mathbf{A}}(\mathbf{x})$ is unique for any $\mathbf{x} \in \mathbb{R}^m$.
- 2. Let $\mathbf{v}_i \in \mathbb{R}^n$, $i = 1, \ldots, d$ with $d \leq n$, which are linearly independent.
 - (a) For any $\mathbf{w} \in \mathbb{R}^n$, please find $\mathbf{P}_{\mathbf{v}_1}(\mathbf{w})$, which is the projection of \mathbf{w} onto the subspace spanned by \mathbf{v}_1 .
 - (b) Please show $\mathbf{P}_{\mathbf{v}_1}(\cdot)$ is a linear map, i.e.,

$$\mathbf{P}_{\mathbf{v}_1}(\alpha \mathbf{u} + \beta \mathbf{w}) = \alpha \mathbf{P}_{\mathbf{v}_1}(\mathbf{u}) + \beta \mathbf{P}_{\mathbf{v}_1}(\mathbf{w}),$$

where $\alpha, \beta \in \mathbb{R}$ and $\mathbf{w} \in \mathbb{R}^n$.

(c) Please find the projection matrix corresponding to the linear map $\mathbf{P}_{\mathbf{v}_1}(\cdot)$, i.e., find the matrix $\mathbf{H}_1 \in \mathbb{R}^{n \times n}$ such that

$$\mathbf{P}_{\mathbf{v}_1}(\mathbf{w}) = \mathbf{H}_1 \mathbf{w}.$$

- (d) Let $V = (v_1, ..., v_d)$.
 - i. For any $\mathbf{w} \in \mathbb{R}^n$, please find $\mathbf{P_V}(\mathbf{w})$ and the corresponding projection matrix \mathbf{H} .
 - ii. Please find **H** if we further assume that $\mathbf{v}_i^{\top} \mathbf{v}_j = 0, \forall i \neq j$.
- 3. (a) Suppose that

$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

What are the coordinates of $\mathbf{P}_{\mathbf{A}}(\mathbf{x})$ with respect to the column vectors in \mathbf{A} for any $\mathbf{x} \in \mathbb{R}^2$? Are the coordinates unique?

(b) Suppose that

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}.$$

What are the coordinates of $\mathbf{P}_{\mathbf{A}}(\mathbf{x})$ with respect to the column vectors in \mathbf{A} for any $\mathbf{x} \in \mathbb{R}^2$? Are the coordinates unique?

4. A matrix **P** is called a projection matrix if **Px** is the projection of **x** onto $C(\mathbf{P})$ for any **x**.

4

- (a) Let λ be the eigenvalue of **P**. Show that λ is either 1 or 0. (*Hint: you may want to figure out what the eigenspaces corresponding to* $\lambda = 1$ *and* $\lambda = 0$ *are, respectively.*)
- (b) Show that **P** is a projection matrix if and only if $\mathbf{P}^2 = \mathbf{P}$ and **P** is symmetric.
- 5. Let $\mathbf{B} \in \mathbb{R}^{m \times s}$ and $\mathcal{C}(\mathbf{B})$ be its column space. Suppose that $\mathcal{C}(\mathbf{B})$ is a proper subspace of $\mathcal{C}(\mathbf{A})$. Is $\mathbf{P}_{\mathbf{B}}(\mathbf{x})$ the same as $\mathbf{P}_{\mathbf{B}}(\mathbf{P}_{\mathbf{A}}(\mathbf{x}))$? Please show your claim rigorously.

Exercise 5: Derivatives with matrices

Definition 1 (Differentiability). [1] Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be a function, $\mathbf{x}_0 \in \mathbb{R}^n$ be a point, and let $L: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. We say that f is differentiable at \mathbf{x}_0 with derivative L if we have

$$\lim_{\mathbf{x} \to \mathbf{x}_0; \mathbf{x} \neq \mathbf{x}_0} \frac{\|f(\mathbf{x}) - f(\mathbf{x}_0) - L(\mathbf{x} - \mathbf{x}_0)\|_2}{\|\mathbf{x} - \mathbf{x}_0\|_2} = 0.$$

We denote this derivative by $f'(\mathbf{x}_0)$.

- 1. Let $\mathbf{x}, \mathbf{a} \in \mathbb{R}^n$ and $\mathbf{y} \in \mathbb{R}^m$. Consider the functions as follows. Please show that they are differentiable and find $f'(\mathbf{x})$.
 - (a) $f(\mathbf{x}) = \mathbf{a}^{\top} \mathbf{x}$.
 - (b) $f(\mathbf{x}) = \mathbf{x}^{\top} \mathbf{x}$.
- 2. Consider a differentiable function $f: \mathbb{R}^n \to \mathbb{R}^m$. The **Jacobian Matrix with denominator layout** is defined by:

$$\frac{\partial f}{\partial \mathbf{x}} = \begin{bmatrix}
\frac{\partial f_1(\mathbf{x})}{\partial x_1} & \frac{\partial f_2(\mathbf{x})}{\partial x_1} & \cdots & \frac{\partial f_m(\mathbf{x})}{\partial x_1} \\
\frac{\partial f_1(\mathbf{x})}{\partial x_2} & \frac{\partial f_2(\mathbf{x})}{\partial x_2} & \cdots & \frac{\partial f_m(\mathbf{x})}{\partial x_2} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_1(\mathbf{x})}{\partial x_n} & \frac{\partial f_2(\mathbf{x})}{\partial x_n} & \cdots & \frac{\partial f_m(\mathbf{x})}{\partial x_n}
\end{bmatrix}.$$

Please show that

$$L(\mathbf{x} - \mathbf{x}_0) = \left(\frac{\partial f}{\partial \mathbf{x}}\right)^{\top} (\mathbf{x} - \mathbf{x}_0),$$

where $L: \mathbb{R}^n \to \mathbb{R}^m$ is the derivative in Definition 1.

- 3. Please follow Definition 1 and give the definition of the differentiability of the functions $f: \mathbb{R}^{n \times n} \to \mathbb{R}$.
- 4. Let $f(\mathbf{X}) = \operatorname{tr}(\mathbf{A}^{\top}\mathbf{X})$, where $\mathbf{A}, \mathbf{X} \in \mathbb{R}^{n \times m}$, and $\operatorname{tr}(\cdot)$ denotes the trace of a matrix. Please discuss the differentiability of f and find f' if it is differentiable.
- 5. (Optional) Let $f(\mathbf{X}) = \det(\mathbf{X})$, where $\det(\mathbf{X})$ is the determinant of $\mathbf{X} \in \mathbb{R}^{n \times n}$. Please discuss the differentiability of f rigorously according to your definition in the last part. If f is differentiable, please find $f'(\mathbf{X})$.
- 6. (Optional) Let \mathbf{S}_{++}^n be the space of all positive definite $n \times n$ matrices. Please show the function $f: \mathbf{S}_{++}^n \to \mathbb{R}$ defined by $f(\mathbf{X}) = \operatorname{tr} \mathbf{X}^{-1}$ is differentiable on \mathbf{S}_{++}^n . (Hint: Expand the expression $(\mathbf{X} + t\mathbf{Y})^{-1}$ as a power series.)

6

Exercise 6: Linear Space

- 1. Let $P_n[x]$ be the set of all polynomials on \mathbb{R} with degree at most n. Show that $P_n[x]$ is a linear space.
- 2. A real symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is called *positive definite*, written $\mathbf{A} \succ \mathbf{0}$, if for all $\mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq \mathbf{0}$,

$$\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x} > 0.$$

Let the set of all positive definite matrices be

$$\mathbb{S}^n_{++} := \Big\{ \mathbf{A} \in \mathbb{R}^{n \times n} : \mathbf{A} = \mathbf{A}^\top, \ \mathbf{x}^\top \mathbf{A} \mathbf{x} > 0 \text{ for all } \mathbf{x} \neq \mathbf{0} \Big\}.$$

Is \mathbb{S}^n_{++} a linear subspace of $\mathbb{R}^{n\times n}$? Please show your conclusion in detail.

Exercise 7: Basis and Coordinates

Suppose that $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}$ is a basis of an *n*-dimensional vector space V.

- 1. Show that $\{\lambda_1 \mathbf{a}_1, \lambda_2 \mathbf{a}_2, \dots, \lambda_n \mathbf{a}_n\}$ is also a basis of V for nonzero scalars $\lambda_1, \lambda_2, \dots, \lambda_n$.
- 2. Let $V = \mathbb{R}^n$, $\mathbf{A} = (\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n) \in \mathbb{R}^{n \times n}$ and $\mathbf{B} = (\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n) \in \mathbb{R}^{n \times n}$. $(\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n) = (\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n)\mathbf{P}$, where $\mathbf{P} \in \mathbb{R}^{n \times n}$ and $\mathbf{b}_i \in \mathbb{R}^n$, for any $i \in \{1, \dots, n\}$. Show that $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ is also a basis of V for any invertible matrix \mathbf{P} .
- 3. Suppose that the coordinate of a vector \mathbf{v} under the basis $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}$ is $\mathbf{x} = (x_1, x_2, \dots x_n)$.
 - (a) What is the coordinate of **v** under $\{\lambda_1 \mathbf{a}_1, \lambda_2 \mathbf{a}_2, \dots, \lambda_n \mathbf{a}_n\}$?
 - (b) What are the coordinates of $\mathbf{w} = \mathbf{a}_1 + \cdots + \mathbf{a}_n$ under $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}$ and $\{\lambda_1 \mathbf{a}_1, \lambda_2 \mathbf{a}_2, \dots, \lambda_n \mathbf{a}_n\}$? Note that $\lambda_i \neq 0$ for any $i \in \{1, \dots, n\}$.
- 4. Suppose $\mathbf{a}=(1,0)$, $\mathbf{b}=(0,1)$ and $\mathbf{c}=(-1,0)$ are three unit vectors in two-dimensional space. $\mathbf{v}=(x,y)$ is a vector in two-dimensional space.
 - (a) Please find the coordinate of \mathbf{v} under basis $\{\mathbf{c},\mathbf{b}\}$? Is the coordinate unique?
 - (b) Please find all the possible combination coefficients of **v** under vectors **a**, **b** and **c**, i.e., $\mathbf{v} = x'\mathbf{a} + y'\mathbf{b} + z'\mathbf{c}$.
 - (c) (**Bonus**) Each set of combination coefficients (x', y', z') in (b) forms a vector in \mathbb{R}^3 . Please find the combination coefficients with minimum ℓ_1 -norm.

Exercise 8: Rank of matrices

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{n \times p}$.

- 1. Please show that
 - (a) $rank(\mathbf{A}) = rank(\mathbf{A}^{\top}) = rank(\mathbf{A}^{\top}\mathbf{A}) = rank(\mathbf{A}\mathbf{A}^{\top});$
 - (b) $\mathbf{rank}(\mathbf{AB}) \leq \mathbf{rank}(\mathbf{A});$ (please give an example when the equality holds)
- 2. The $column\ space$ of **A** is defined by

$$C(\mathbf{A}) = \{ \mathbf{y} \in \mathbb{R}^m : \mathbf{y} = \mathbf{A}\mathbf{x}, \, \mathbf{x} \in \mathbb{R}^n \}.$$

The $null\ space\ of\ \mathbf{A}$ is defined by

$$\mathcal{N}(\mathbf{A}) = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} = 0 \}.$$

Notice that, the rank of **A** is the dimension of the column space of **A**.

Please show that

- (a) $\operatorname{rank}(\mathbf{A}) = \dim(\mathcal{C}(\mathbf{A});$
- (b) $\operatorname{rank}(\mathbf{A}) + \dim(\mathcal{N}(\mathbf{A})) = n.$
- 3. Given that

$$rank(AB) = rank(B) - dim(C(B) \cap N(A)).$$
(1)

Please show the results in 1.(b) by Eq. (1).

Exercise 9: Properties of Eigenvalues and Singular Values

1. Suppose the maximum eigenvalue, minimum eigenvalue and maximum singular value of a given symmetric matrix $\mathbf{A} \in S^n$ are denoted by $\lambda_{\max}(\mathbf{A})$ and $\lambda_{\min}(\mathbf{A})$, respectively. Please show that

$$\lambda_{\max}(\mathbf{A}) = \sup_{\mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq \mathbf{0}} \frac{\mathbf{x}^\top \mathbf{A} \mathbf{x}}{\mathbf{x}^\top \mathbf{x}}, \quad \lambda_{\min}(\mathbf{A}) = \inf_{\mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq \mathbf{0}} \frac{\mathbf{x}^\top \mathbf{A} \mathbf{x}}{\mathbf{x}^\top \mathbf{x}}.$$

- 2. (**Optional**) Suppose $B = (bij) \in \mathbb{R}^{m \times n} \mathbf{B} = (bij) \in \mathbb{R}^{m \times n}$ with maximum singular value max $\sigma_{\max}(\mathbf{B})$.
 - (a) Let $\|\mathbf{B}\|_2 := \sup_{\mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{B}\mathbf{x}\|_2}{\|\mathbf{x}\|_2}$. Please show that

$$\sigma_{\max}(\mathbf{B}) = \|\mathbf{B}\|_2.$$

(b) Please show that

$$\sigma_{\max}(\mathbf{B}) = \sup_{\mathbf{x} \in \mathbb{R}^m, \mathbf{y} \in \mathbb{R}^n, \mathbf{x}, \mathbf{y} \neq 0} \frac{\mathbf{x}^\top \mathbf{B} \mathbf{y}}{\|\mathbf{x}\|_2 \|\mathbf{y}\|_2}.$$

Exercise 10: Matrix SVD Decomposition and Pseudoinverse

1. For any real matrix $\mathbf{A} \in \mathbb{R}^{n \times m}$, the **Moore-Penrose generalized inverse** (or pseudoinverse) of \mathbf{A} , denoted by $\mathbf{A}^+ \in \mathbb{R}^{m \times n}$, is a matrix that satisfies the following four conditions:

(a) $\mathbf{A}\mathbf{A}^{+}\mathbf{A} = \mathbf{A}$ (Consistency condition)

(b) $\mathbf{A}^{+}\mathbf{A}\mathbf{A}^{+} = \mathbf{A}^{+}$ (Reflexivity condition)

(c) $(\mathbf{A}\mathbf{A}^+)^{\top} = \mathbf{A}\mathbf{A}^+$ (Symmetry condition 1)

 $(d) (\mathbf{A}^{+}\mathbf{A})^{\top} = \mathbf{A}^{+}\mathbf{A}$ (Symmetry condition 2)

Suppose that the matrix **A** can be decomposed via Singular Value Decomposition (SVD) as $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}}$, Please show that $\mathbf{A}^{+} = \mathbf{V} \mathbf{\Sigma}^{+} \mathbf{U}^{\mathsf{T}}$, where $\mathbf{\Sigma}^{+} \in \mathbb{R}^{m \times n}$ is defined by:

$$\Sigma_{ij}^{+} = \begin{cases} \frac{1}{\Sigma_{ii}} & \text{if } i = j \text{ and } \Sigma_{ii} \neq 0, \\ 0 & \text{otherwise.} \end{cases}$$

- 2. (Optional) Please show that \mathbf{A}^+ is unique for any matrix $\mathbf{A} \in \mathbb{R}^{n \times m}$.
- 3. Consider the linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ where $\mathbf{A} \in \mathbb{R}^{n \times m}$, $\mathbf{x} \in \mathbb{R}^m$, and $\mathbf{b} \in \mathbb{R}^n$. Please show that if the system has no solution (i.e., \mathbf{b} is not in the column space of \mathbf{A}), the least squares solution to the system

$$\operatorname{arg} \min_{\mathbf{x} \in \mathbb{R}^m} \quad \left\| \mathbf{A} \mathbf{x} - \mathbf{b} \right\|_2^2,$$

is given by $\mathbf{x} = \mathbf{A}^+ \mathbf{b}$, where $\mathbf{A}^+ \in \mathbb{R}^{m \times n}$ is the Moore-Penrose generalized inverse of matrix \mathbf{A} defined above.

(**Hint**: For any orthogonal matrix $\mathbf{U} \in \mathbb{R}^{n \times n}$ and vector $\mathbf{x} \in \mathbb{R}^n$, then $\|\mathbf{U}\mathbf{x}\|_2 = \|\mathbf{x}\|_2$)

References

 $[1]\,$ T. Tao. Analysis II. Springer, 2015.