
Introduction to Machine Learning

Machine Intelligence Research and Applications Lab

Lecture 17: Elementary Reinforcement Learning – Deterministic  Environment

Dec 12, 2024

jiewangx@ustc.edu.cn

Jie Wang

Department of Electronic Engineering and Information Science (EEIS) 
http://staff.ustc.edu.cn/~jwangx/

Machine Intelligence Research and Applications Lab



Contents

• Learning Scenarios

• Markov Decision Process

• Planning Algorithms

• Learning Algorithms



Learning Scenarios



Grid World



Snooker



Three Kingdoms

Agent

Environment



Three Kingdoms

��  ��

Agent

Environment



Three Kingdoms

��  ��

Agent

Environment

� �� �� → ��



Three Kingdoms

Agent

Environment

� �� �� → ��

P ��+1, ��+1 ��, �� 

��+1, ��+1

↓

��+1 ��+1



Three Kingdoms
� �� �� → ��

��  ��

��+1 ��+1

Agent

Environment

P ��+1, ��+1 ��, �� 

��+1, ��+1

↓



Agent & Environment



Agent & Environment

Agent



Agent & Environment

Agent



Agent & Environment

EnvironmentAgent



Interactions between Agent & Environment

EnvironmentAgent A perceive the 
current state of E



Interactions between Agent & Environment

EnvironmentAgent current location, the grids 
available for next move, etc  

distribution of all billiards, … 

army, generals, population, …  



states

Interactions between Agent & Environment

EnvironmentAgent

states

states

A could perform actions 
to alter the states of E



states

Interactions between Agent & Environment

EnvironmentAgent

states

states

select a direction and 
move to another grid

select a billiard and send it 
to another location

attack/defend/develop…



Goal: find the trophy
states

Goal State of the Agent

EnvironmentAgent

states

states

actions

actions

actions

Goal: win the game

Goal: conquer the 
other two kingdoms



Markov Decision Process



Agent & Environment

• The system consists of an agent (may be more) and an environment, interacting with 
each other.



States

• From the perspective of the agent, the environment is described by a set of states.

0 1 2 3

0

1

2

States: 



Actions

• At each state, the agent can pick and perform certain action to alter the state.

0 1 2 3

0

1

2

Action space: 

                        :  state transition function

deterministic environment



Goal State

• No matter starting from which state, the agent would like to achieve certain goal state.

0 1 2 3

0

1

2

0 1 2 3

0

1

2

0 1 2 3

0

1

2

The game will terminate if the agent arrives at         (win) or        (lose).
The states          and          are also called absorbing states 

In some cases, there is NO goal state.



Policy

• To achieve the goal state, the agent needs to pick and perform a sequence of actions 
according to the observed states. 

0 1 2 3

0

1

2

0 1 2 3

0

1

2

A good policy A bad policy

Policy: 



The Learning Task

• Find a policy that can direct the agent to its goal state no matter which state the agent 
would have been at the very first beginning.

0 1 2 3

0

1

2



The Learning Task

How can we find a desired policy to direct the agent’s move?



Reward  

• We assume that the goal of the agent can be encoded by a reward function

• Starting from an arbitrary state, the desired policy would pick for the agent 
the actions that maximize the reward accumulated over time.

The reward function is not always available. For 
some applications, you need to define it properly.

starting from an arbitrary state

Looking for a policy to pick for the agent the actions 
that will maximize the accumulated reward over time 

Looking for a policy that would pick for 
the agent the actions to achieve its goals



Reward  

• We assume that the goals of the agent can be encoded by a reward function

0 1 2 3

0

1

2

The reward function is not always available. For 
some applications, you need to define it properly.



Markov Decision Process (MDP)
• Indeed, we have already introduced the so-called MDP, which is defined (rigorously) by 

 a set of states    , possibly infinite 
 a set of actions    , possibly infinite
 an initial state             
 a transition probability                  : distribution over destination states
 a reward probability                 : distribution over rewards   

• This model is Markovian because the transition and reward probabilities only depend on the 
current state and the action picked and performed at the current state, instead of the 
previous sequence of states and actions performed.

• In this lecture, we assume that 
 the states and the actions are finite
 the environment is deterministic, i.e., the destination state and the reward are 

completely determined by the current state and the action performed at the current 
state 

MRT Chapter 14

https://cs.nyu.edu/~mohri/mlbook/


The Optimal Policy

Under a MDP, we shall look for the (optimal) policy that leads 
to the greatest (expected) accumulated reward no matter 
which state the agent begins with.



• Starting from the      step, the cumulative reward by following    is given by

Accumulated Reward

• Suppose that a policy    is given. 

discounted factor, 

policy reward state transition



• Starting from the      step, the cumulative reward by following    is given by

Accumulated Reward

• Suppose that a policy    is given. 

discounted factor, 

policy reward state transition

a trajectory 



• The value function                         is given by  

Value Function

• Suppose that a policy    is given. 

policy reward state transition

a trajectory 



Value Function

0 1 2 3

0

1

2

0 1 2 3

0

1

2

A good policy A bad policy



Value Function – Bellman Equation

• Bellman Equation

• The value function                         is given by  

policy reward state transition

a trajectory 



Value Function – Bellman Equation

• Bellman Equation

0 1 2 3

0

1

2

A good policy



Value Function – Bellman Equation

• Bellman Equation

0 1 2 3

0

1

2

A good policy



Value Function – Bellman Equation

• Bellman Equation

0 1 2 3

0

1

2

A good policy



Value Function – Bellman Equation

• Bellman Equation

0 1 2 3

0

1

2

A good policy



Value Function – Bellman Equation

• Bellman Equation

0 1 2 3

0

1

2

A good policy

invertible？



Value Function – Bellman Equation

• Bellman Equation

0 1 2 3

0

1

2

A good policy

Theorem: For a finite MDP, Bellman’s equation 
admits a unique solution that is given by 

• The vector     and matrix     depend on the policy 



The Learning Task Revisited

• The learning task for RL scenarios is to learn an optimal policy in the sense that

0 1 2 3

0

1

2

0 1 2 3

0

1

2

A good policy A bad policy

• For      and     , we have  

• Indeed,      is the optimal policy.



The Q Function

• Learning the optimal policy is challenging

• An alternative approach to find the optimal policy indirectly is by computing the 
state-action value function (Q function)

• The definition of the optimal policy implies that 

• Notice that

• All together, we have 

� �, �  is the accumulated reward by performing the 
action � first and then following the optimal policy

Bellman Equations 
for the optimal policy



Planning Algorithms



Planning

• Planning: we assume that the agent has perfect knowledge of the environment; thus, 
to find the optimal policy, there is no need for the agent to actually perform actions and 
interact with the environment (no need to learn)

0 1 2 3

0

1

2

                        
                        : state transition
                        : reward

Known



Value Iteration

• Value iteration aims to find the optimal value function by solving the Bellman equations 
for the optimal policy

• The key is that the solution to the Bellman equations are indeed a fixed-point, i.e., the 
unknowns we want to solve for are on both sides of the Bellman equations



Value Iteration

• Value iteration aims to find the optimal value function and thus the optimal policy

0 1 2 3

0

1

2

Example



Value Iteration

• Value iteration aims to find the optimal value function and thus the optimal policy

0 1 2 3

0

1

2

Nothing happens

Example



Value Iteration

• Value iteration aims to find the optimal value function and thus the optimal policy

0 1 2 3

0

1

2

Example



Value Iteration

• Value iteration aims to find the optimal value function and thus the optimal policy

Theorem: For any initial value   , the sequence generated by the value 
iteration algorithm converges to      .

• The key to the proof is the contraction mapping theorem 



Policy Iteration

• Policy iteration improves the policy directly



Policy Iteration

• Policy iteration improves the policy directly

0 1 2 3

0

1

2

A bad policy



Policy Iteration

• Policy iteration improves the policy directly

0 1 2 3

0

1

2

A bad policy

1�� iteration

11 states in total



Policy Iteration

• Policy iteration improves the policy directly

0 1 2 3

0

1

2

A bad policy

1�� iteration



Policy Iteration

• Policy iteration improves the policy directly

0 1 2 3

0

1

2

A bad policy

1�� iteration



Policy Iteration

• Policy iteration improves the policy directly

81 90 100 0

0 -100 0

0 0 0 0

0 1 2 3

0

1

2

A bad policy

1�� iteration



Policy Iteration

• Policy iteration improves the policy directly

1�� iteration: update the policy

We can randomly select one action from                                           . 
However, it is better select one action from up and right (why?).

81 90 100 0

0 -100 0

0 0 0 0

0 1 2 3

0

1

2

A bad policy



Policy Iteration

• Policy iteration improves the policy directly

1�� iteration: update the policy

We can indeed assign negative rewards for actions that will not 
alter the states when these states are not the goal states. Or, we 
can simply ignore these actions.

81 90 100 0

0 -100 0

0 0 0 0

0 1 2 3

0

1

2

A bad policy



81 90 100 0

0 -100 0

0 0 0 0

Policy Iteration

• Policy iteration improves the policy directly

1�� iteration: update the policy

0 1 2 3

0

1

2

A bad policy



Learning Algorithms



Learning

• Learning: as the environment model, i.e., the transition and reward, is unknown, the 
agent may need to learn them based on the training information. 

0 1 2 3

0

1

2

                        
                        : state transition
                        : reward

Unknown



Learning

• Learning: as the environment model, i.e., the transition and reward, is unknown, the 
agent may need to learn them based on the training information.

• Model-free approach: the agent learns the optimal policy directly, e.g., Q-learning

• Model-based approach: the agent first learns the environment model and then the 
optimal policy

0 1 2 3

0

1

2

(0,0) (0,1) (0,2) (1,2) (2,3) (3,2)
up up right right right

0 0 0 0 100

(1,0) (2,0) (2,1) (3,1)
right up right

0 0 -100

Examples of training data



The Q-learning Algorithm

• Initialize the matrix     to zero
• Observe the current state
• Do forever:

• Pick and perform an action
• Receive immediate reward
• Observe the new state
• Update

•         

A sufficient condition for             to converge is to visit each state-action pair infinitely often 



The Q-learning Algorithm

• Initialize the matrix     to zero
• Observe the current state
• Do forever:

• Pick and perform an action
• Receive immediate reward
• Observe the new state
• Update

•         

How to pick the action?



Exploitation vs Exploration

• Multi-armed bandit

Bandit 1 Bandit 2 Bandit 3 Bandit 4 Bandit 5

• Which machine next?
• Exploitation: the machine with the largest reward at present
• Exploration: randomly select a machine 



Exploitation vs Exploration

• Multi-armed bandit

Bandit 1 Bandit 2 Bandit 3 Bandit 4 Bandit 5

• �-greedy
• with probability 1 − �, we do exploitation 
• with probability �, we do exploration, i.e., we uniformly randomly select 

an action from all possible actions 

• Tips for �-greedy
• At the beginning, the agent does not know the environment very well. 

Thus, it need to do more exploration and a large value of � is needed.
• When the environment model is well explored, the agent can do more 

exploitation. Thus, we favor a small value of �.



Exploitation vs Exploration

• Multi-armed bandit

Bandit 1 Bandit 2 Bandit 3 Bandit 4 Bandit 5

• A soft sampling strategy
• Given a state, we can choose action probabilistically

• Smaller values of � will assign higher probabilities for actions with high 
�, leading to an exploitation strategy.

• Larger values of � will encourage the agent to explore actions that do 
not currently have high � values.

P � � =
�� �,� /�

 �′ �� �, �′ /�



The Q-learning Algorithm

� = 0.3

0 1 2 3

0

1

2

(0,0) (0,1) (0,2) (1,2) (2,3) (3,2)
up up right right right

0 0 0 0 100

• an example episode
• the initial state in each episode 

should NOT be fixed (why?)



The Q-learning Algorithm

� = 0.3

0 1 2 3

0

1

2

(0,0) (0,1) (0,2) (1,2) (2,3) (3,2)
up up right right right

0 0 0 0 100



Questions



SARSA

Alpaydin 2014, Chapter 18

Look one step further 
than Q-learning

https://mitpress.mit.edu/books/introduction-machine-learning-third-edition


SARSA

0 1 2 3

0

1

2


