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1 The Primal Problem

Recall from the last lecture that, we are interested in the problems that take the form of

min
x

f(x) (1)

s.t.g(x) ≤ 0,

h(x) = 0,

x ∈ X.

We denote the feasible set of (1) by

D0 = {x : g(x) ≤ 0,h(x) = 0,x ∈ X}. (2)

Each element in D0 is called a feasible solution. The optimal function value is

f∗ = inf
x∈D0

f(x). (3)

Assumption 1. Feasibility and Boundedness The feasible set is nonempty and the objective
function is bounded from below, that is,

−∞ < f∗ = inf
x∈D0

f(x) < ∞.

2 The Lagrangian Dual Problem

2.1 Weak duality

Recall from the last lecture that, for any λ ≥ 0, we have

q(λ, µ) ≤ f∗.

This immediately leads to the result as follows.

Theorem 1. Weak Duality Theorem We define the dual optimal value by

q∗ = sup
λ≥0,µ

q(λ, µ). (4)

Then, we have

q∗ ≤ f∗. (5)

The optimization problem in (4) is the so-called Lagrangian dual problem. As we have shown
that the dual function q is concave, the Lagrangian dual problem is indeed equivalent to a convex
optimization problem (why?).

Theorem 1 implies that, the dual optimal value is a lower bound of the optimal function value
f∗. The difference between f∗ and q∗ is the so-called duality gap.
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Definition 1. Duality gap is defined by

f∗ − q∗.

Remark 1. Duality gap is a commonly used termination condition for a set of optimization algo-
rithms.

In terms of the duality gap, we naturally have a few questions to ask.

Question 1. When is the duality gap zero, i.e., q∗ = f∗?

Question 2. Suppose that the duality gap is zero, and there exists (λ∗, µ∗) with λ∗ ≥ 0 such that

q∗ = q(λ∗, µ∗) = inf
x∈X

L(x, λ∗, µ∗) = f∗.

Then, if x̂ minimizes L(x, λ∗, µ∗), that is,

x̂ ∈ argmin
x∈X

L(x, λ∗, µ∗), (6)

can we say that, x̂ is one of the optimal solutions to the primal problem, i.e.,

x̂ ∈ argmin
x∈D0

f(x)?

All of the subsequent discussions are trying to answer the above questions.

Remark 2. The major motivation for introducing the Lagrangian is to transforming a constrained
optimization problem with the feasible set D0 to an (almost) unconstrained optimization prob-
lem with feasible set X, while the optimal function value remains the same.

2.2 The Geometric Multipliers

S = {(g(x), f(x)) : x 2 X}

(0, f⇤)

Figure 1: Illustration of the geometric multipliers.

In view of Figure 1, the equality q∗ = f∗ holds implies that, we can find a hyperplane with the
normal vector (λ∗, 1) that supports the set S from below intercepts the vertical axis at the level
f∗. In this case, we can see that the duality gap is zero. This motivates the concept geometric
multipliers as follows.
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Definition 2. A vector (λ∗, µ∗) = (λ∗
1, . . . , λ

∗
m, µ∗

1, . . . , µ
∗
p) is said to be a geometric multiplier

vector (or simply geometric multiplier) for the primal problem if

λ∗
i ≥ 0, i = 1, . . . ,m,

and

f∗ = inf
x∈X

L(x, λ∗, µ∗). (7)

Remark 3. Notice that, Eq. (7) is a requirement of the geometric multiplier instead of a definition
of f∗. Recall that,

f∗ = inf
x∈D0

f(x).

Remark 4. The RHS of Eq. (7) is indeed q(λ∗, µ∗). Therefore, the existence of a geometric
multiplier (λ∗, µ∗) implies that we can find a feasible solution (λ∗, µ∗) of the dual problem such
that f∗ = q(λ∗, µ∗).

The existence of geometric multipliers indeed implies that there is no duality gap. We
formalize this result by the proposition as follows.

Proposition 1. Suppose that (λ∗, µ∗) is a geometric multiplier vector of the primal problem. Then,
we have the following hold.

1. q∗ = q(λ∗, µ∗), that is, (λ∗, µ∗) is one of the dual optimal solutions to the Lagrangian dual
problem (4);

2. the duality gap is zero, i.e., f∗ = q∗.

Proof. Recall that, the Lagrangian dual function is defined by

q(λ, µ) = inf
x∈X

L(x, λ, µ).

Thus, the right hand side of Eq. (7) is indeed q(λ∗, µ∗), and we can write the condition in Eq. (7)
as

f∗ = inf
x∈X

L(x, λ∗, µ∗) = q(λ∗, µ∗). (8)

By further noting the weak duality property in (5) and the condition λ ≥ 0 in Definition 2, we can
conclude that

q∗ = q(λ∗, µ∗), (9)

that is, the geometric multiplier (λ∗, µ∗) is one of the dual optimal solutions to the Lagrangian dual
problem (4). Moreover, combining (8) and (9) immediately leads to f∗ = q∗, which completes the
proof.

Remark 5. If we can find a geometric multiplier, then there is no duality gap. However, the
converse is not true. That is, if there is no duality gap, we may not be able to find a geometric
multiplier. They may not even exist at all.

Example 1. Consider an optimization problem as follows.

min f(x) = x

s.t. g(x) = x2 ≤ 0,

x ∈ X = R.
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2.3 The Complementary Slackness

If a geometric multiplier (λ∗, µ∗) is known, we hope that x̂ that minimizes the Lagrangian L(x, λ∗, µ∗)
over x ∈ X is one of the optimal solutions to the primal problem as well. However, the vector
x̂ ∈ argminx∈X L(x, λ∗, µ∗) may not even be in the feasible set D0.

Example 2. Consider an optimization problem as follows.

min f(x) =


ex, x ≤ 0,

1− x, x ∈ [0, 1],

0, x > 1.

s.t. g(x) = x ≤ 0.

We can see that, the geometric multiplier λ∗ is 0, and the corresponding Lagrangian is

L(x, λ∗) = f(x).

Thus,

argmin
x∈R

L(x, λ∗) = {x : x ≥ 1}.

Clearly, none of the points that minimizes L(x, λ∗) is feasible regarding the primal problem.

What if x̂ ∈ argminx∈X L(x, λ∗, µ∗) is a feasible solution to the primal problem? Can we
conclude that such a x̂ is an optimal solution to the primal problem? The answer is still no.

Example 3. Consider an optimization problem as follows.

min f(x) =

{
−x, x ≤ 0,

0, x > 0.

s.t. g(x) = x ≤ 0.

We can see that, the geometric multiplier λ∗ is 1, and the corresponding Lagrangian is

L(x, λ∗) = f(x) + g(x) =

{
0, x ≤ 0,

x, x > 0.

Thus,

argmin
x∈R

L(x, λ∗) = {x : x ≤ 0}.

However, it is easy to see that only x∗ = 0 is the optimal solution to the problem.

Remark 6. Notice that, Example 3 also provides us an example that the geometric multiplier may
not be unique. Indeed, for Example 3, the geometric multiplier is λ∗ ∈ [0, 1].

Thus, we need extra conditions to find the desirable optimal solutions from the set in (6), which
is the so-called complementary slackness.
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Proposition 2. Let (λ∗, µ∗) be a geometric multiplier. Then, x∗ is a global minimum of the primal
problem if and only if

x∗ is feasible, (10)

x∗ ∈ argmin
x∈X

L(x, λ∗, µ∗), (11)

λ∗
i gi(x

∗) = 0, i = 1, . . . ,m. (12)

Proof.

1. (⇒) Suppose that x∗ is a global minimum of the primal problem. Then, x∗ must be feasible,
and thus

f(x∗) ≥ f(x∗) +

m∑
i=1

λigi(x
∗) +

p∑
i=1

µihi(x
∗) = L(x∗, λ∗, µ∗) ≥ inf

x∈X
L(x, λ∗, µ∗) = f∗.

The definition of f∗ leads to f∗ = f(x∗), which implies that the above inequality is an equality.
Thus,

f(x∗) = L(x∗, λ∗, µ∗) = f∗ = inf
x∈X

L(x, λ∗, µ∗).

This leads to (11) and

f(x∗) = L(x∗, λ∗, µ∗) = f(x∗) + ⟨λ∗,g(x∗)⟩+ ⟨µ∗,h(x∗)⟩.

As x∗ is feasible, that is, g(x∗) ≤ 0 and h(x∗) = 0, we have Eq. (12).

2. (⇐) Suppose that x∗ is feasible and (11) and (12) hold.

In view of (11) and the fact that (λ∗, µ∗) is the geometric multiplier, we have

L(x∗, λ∗, µ∗) = f∗ = inf
x∈D0

f(x).

Moreover, the feasibility of x∗ and (12) imply that

L(x∗, λ∗, µ∗) = f(x∗) +
m∑
i=1

λigi(x
∗) +

p∑
i=1

µihi(x
∗) = f(x∗).

Combining the above two equations leads to

f(x∗) = f∗ = inf
x∈D0

f(x),

which implies that x∗ is a global minimum of the primal problem.

The proof is complete.

Remark 7. Complementary slackness in (12) implies that

λ∗
i > 0 ⇒ gi(x

∗) = 0,

gi(x
∗) < 0 ⇒ λ∗

i = 0.

Complementary slackness is frequently used in characterizing the optimal solutions.
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2.4 Primal and dual optimal solutions

Theorem 2. Optimality Conditions (The KKT Conditions) A pair x∗ and (λ∗, µ∗) is an optimal
solution and geometric multiplier pair if and only if

x∗ ∈ X, g(x∗) ≤ 0,h(x∗) = 0, (Primal Feasibility), (13)

λ∗ ≥ 0, (Dual Feasibility), (14)

x∗ ∈ argmin
x∈X

L(x, λ∗, µ∗), (Lagrangian Optimality), (15)

λ∗
i gi(x

∗) = 0, i = 1, . . . ,m, (Complementary Slackness). (16)

Proof.

1. ⇒ Suppose that x∗ and (λ∗, µ∗) is an optimal solution and geometric multiplier pair. Then,
the primal feasibility and dual feasibility hold.

Moreover,

f(x∗) = f∗ = inf
x∈X

L(x, λ∗, µ∗) ≤ L(x∗, λ∗, µ∗) ≤ f(x∗),

which implies the Lagrangian optimality and the complementary slackness.

2. ⇐ Suppose that the conditions in (13) to (16) hold. Then

f(x∗) = L(x∗, λ∗, µ∗) = min
x∈X

L(x, λ∗, µ∗) ≤ inf
x∈D0

L(x, λ∗, µ∗) ≤ inf
x∈D0

f(x) ≤ f(x∗),

which implies that x∗ is the optimal solution and (λ∗, µ∗) is the geometric multiplier.

The proof is complete.

Proposition 3. Saddle Point Theorem (Optional) A pair x∗ and (λ∗, µ∗) is an optimal solution-
geometric multiplier pair if and only if x∗ ∈ X, λ∗ ≥ 0, and (x∗, λ∗, µ∗) is a saddle point of the
Lagrangian, in the sense that

L(x∗, λ, µ) ≤ L(x∗, λ∗, µ∗) ≤ L(x, λ∗, µ∗), ∀x ∈ X, λ ≥ 0, µ ∈ Rp. (17)

Proof.

1. ⇒ As the pair x∗ and (λ∗, µ∗) is an optimal solution-geometric multiplier pair, we have (13)
to (16) hold. Clearly, we can see that x∗ ∈ X, λ∗ ≥ 0, and the Lagrangian optimality in (15)
implies that

L(x∗, λ∗, µ∗) ≤ L(x, λ∗, µ∗), ∀x ∈ X.

Moreover, in view of the definition of geometric multiplier, we have

f∗ = inf
x∈X

L(x, λ∗, µ∗) = L(x∗, λ∗, µ∗).

Thus, combining the feasibility of x∗ and λ ≥ 0 leads to

L(x∗, λ, µ) = f(x∗) + ⟨λ,g(x∗)⟩+ ⟨µ,h(x∗)⟩ ≤ f(x∗) = L(x∗, λ∗, µ∗),

which completes the proof.
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2. ⇐ In view of Theorem 2, it suffices to show that (13) and (16) hold. The left half of the
saddle point property of the Lagrangian in (17) implies that

L(x∗, λ, µ) ≤ L(x∗, λ∗, µ∗), ∀λ ≥ 0,

⇒f(x∗) + ⟨λ,g(x∗)⟩+ ⟨µ,h(x∗)⟩ ≤ L(x∗, λ∗, µ∗), ∀λ ≥ 0.

In other words, L(x∗, λ, µ) is upper bounded for any λ ≥ 0. Consequently, we have

g(x∗) ≤ 0, h(x∗) = 0,

i.e., the primal feasibility (13) holds (otherwise L(x∗, λ, µ) can not be upper bounded).

To show that the complementary slackness in (16) holds, we combine the primal feasibility of
x∗ and left half of (17)

f(x∗) + ⟨λ,g(x∗)⟩ ≤ f(x∗) + ⟨λ∗,g(x∗)⟩, ∀λ ≥ 0,

λ→0
===⇒⟨λ∗,g(x∗)⟩ =

m∑
i=1

λ∗
i gi(x

∗) ≥ 0.

On the other hand, in view of the facts that λ∗ ≥ 0 and g(x∗) ≤ 0, we have

λ∗
i gi(x

∗) ≤ 0, i = 1, . . . ,m.

All together, we have

λ∗
i gi(x

∗) = 0, i = 1, . . . ,m.

Thus, the complementary slackness holds and the proof is complete.

2.5 Strong duality

We discuss conditions that ensure the duality gap is zero.

Theorem 3. [1] Suppose that the primal problem in (1) is a convex optimization problem, that is,
f and gi, i = 1, . . . ,m are convex, hi, i = 1, . . . , p are affine, and X is a convex set. If there exists
an x̂ ∈ X such that g(x̂) < 0 and h(x̂) = 0, and 0 ∈ int h(X), where h(X) = {h(x) : x ∈ X}.
Then, the duality gap is zero. Furthermore, if f∗ is finite, then there exists at least one geometric
multiplier.

Proposition 4. [2] Strong Duality Theorem - Linear Constraints Consider the primal prob-
lem. Suppose that f is convex, D0 is a polyhedron (that is, D0 = {x : ⟨ai,x⟩ ≤ bi, i = 1, . . . , r}),
and f∗ is finite. Then, there is no duality gap and there exists at least one geometric multiplier.

Proposition 5. [2] Linear and Quadratic Programming Duality Consider the primal prob-
lem. Suppose that f is convex quadratic, D0 is a polyhedron, and f∗ is finite. Then, the primal
and dual problems have optimal solutions, and the duality gap is 0.
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3 The Dual Problem of SVM

The Primal Problem

Recall that the soft margin SVM takes the form of

min
w,b,ξ

1

2
∥w∥2 + C

n∑
i=1

ξi, (18)

s.t. yi(⟨w,xi⟩+ b) ≥ 1− ξi, i ∈ [n],

ξi ≥ 0, i ∈ [n].

The primal variables are w, b, and ξ. By Proposition (5), the strong duality holds.

The Lagrangian

To find the dual problem of (18), we first construct the Lagrangian:

L(w, b, ξ, α, µ) =
1

2
∥w∥2 + C

n∑
i=1

ξi +

n∑
i=1

αi(1− ξi − yi(⟨w,xi⟩+ b))−
n∑

i=1

µiξi,

where αi, µi ≥ 0, i = 1, . . . , n, are the dual variables.

The Dual Function

We next find the dual function:

q(α, µ) = inf
w,b,ξ

L(w, b, ξ, α, µ) (19)

= inf
w

1

2
∥w∥2 −

n∑
i=1

αiyi⟨w,xi⟩

+ inf
b

−b

n∑
i=1

αiyi

+ inf
ξ

n∑
i=1

(C − αi − µi)ξi.

For fixed (α, µ), let (ŵ, b̂, ξ̂) be the optimal solution to the above problem. The first order optimal
condition implies that

∇w L(w, b, ξ, α, µ)|w=ŵ = 0 ⇒ ŵ −
n∑

i=1

αiyixi = 0,

∇b L(w, b, ξ, α, µ)|b=b̂ = 0 ⇒ −
n∑

i=1

αiyi = 0,

∇ξi L(w, b, ξ, α, µ)|ξi=ξ̂i
= 0 ⇒ C − αi − µi = 0, i = 1, . . . , n.

Plugging the above equations into Eq. (19) leads to

q(α, µ) = −1

2

n∑
i=1

n∑
j=1

αiαjyiyj⟨xi,xj⟩+
n∑

i=1

αi. (20)
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The Dual Problem

Thus, the dual problem of the soft margin SVM in (18) is

max
α

− 1

2

n∑
i=1

n∑
j=1

αiαjyiyj⟨xi,xj⟩+
n∑

i=1

αi

s.t.
n∑

i=1

αiyi = 0,

C − αi − µi = 0,

αi ≥ 0,

µi ≥ 0, i = 1, . . . , n.

We can remove µ from the problem by noting that

µi = C − αi, i = 1, . . . , n,

which leads to

min
α

1

2

n∑
i=1

n∑
j=1

αiαjyiyj⟨xi,xj⟩ −
n∑

i=1

αi (21)

s.t.

n∑
i=1

αiyi = 0,

αi ∈ [0, C], i = 1, . . . , n.

Complementary Slackness

Let (w∗, b∗, ξ∗) and (α∗, µ∗) be the optimal solutions to the primal and dual problems of SVM,
respectively. By Theorem 2, we write the complementary slackness as follows.

α∗
i (1− ξ∗i − yi(⟨w∗,xi⟩+ b∗)) = 0, i = 1, . . . , n, (22)

µ∗
i (−ξ∗i ) = (C − α∗

i )(−ξ∗i ) = 0, i = 1, . . . , n. (23)

By the complementary slackness in (22) and (23), we have several interesting observations.

1. Suppose that one of the entries of α∗, say α∗
k, falls in the interval (0, C). Then, the comple-

mentary slackness conditions (22) and (23) implies that

yk(⟨w∗,xk⟩+ b∗) = 1− ξ∗k an ξ∗k = 0,

respectively. Clearly, we have

yk(⟨w∗,xk⟩+ b∗) = 1, (24)

which implies that xk is a support vector.

2. Suppose that

1− ξ∗k − yk(⟨w∗,xk⟩+ b∗) < 0.

Then, by (22) and (23), we have α∗
k = 0 and ξ∗k = 0, respectively. Thus,

yk(⟨w∗,xk⟩+ b∗) > 1,

which implies that xk is correctly classified and outside of the region between the marginal
hyperplanes.
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Recovering the Primal Optimum from the Dual Optimum

Proposition 6. Let α∗ be one of the optimal solutions to (21). Then, we have

w∗ =

n∑
i=1

α∗yixi.

If further α∗
k is one of the entries of α∗ and α∗

k ∈ (0, C), then we have

b∗ =yk − ⟨w∗,xk⟩.
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