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The major reference of this lecture is [2, 3].

1 Introduction

We are given a data set {(xi, yi)}ni=1, where xi ∈ Rd and yi ∈ R. We would like to fit the data by
linear models. We have learned how to find the optimal linear model by two different approach.
The good news is that the problem admits a closed form solution:

ŵ = (X⊤X)−1X⊤y,

which involves computing the inverse matrix. This can be computationally intractable. Thus, we
would like to find ŵ by an iterative approach, that is, gradient descent.

To simplify notations, we use ∥ · ∥ to denote the Euclidean norm ∥ · ∥2.

2 Basic Terminology

Definition 1. A general convex optimization problem takes the form as follows.

min
x

f(x) (1)

s.t.x ∈ D,

where f : Rn → R is a proper convex function and D ⊆ Rn is a nonempty convex set with
D ⊆ dom f . The set D is the feasible set, and each element in D is called a feasible solution.

Definition 2. A point x∗ ∈ Rn is an optimal point, or solves the problem (1), if x∗ is a feasible
solution, i.e., x∗ ∈ D, and

f(x∗) = f∗ = inf
x∈D

f(x). (2)

The value f∗ defined in Eq. (2) is the optimal value. The set of all optimal points is the optimal
set, denoted by

X∗ = {x∗ : x∗ ∈ D, f(x∗) = f∗}.

Remark 1.

• If the problem (1) has an optimal solution, we say the optimal value is attained or achieved,
and the problem is solvable. Otherwise (X∗ is empty), we say the optimal value is not
attained or not achieved.

• A feasible point x with f(x) ≤ f∗ + ϵ (ϵ > 0) is called ϵ-suboptimal, and the set of all
ϵ-suboptimal points is called the ϵ-suboptimal set for the problem (1).

Proposition 1. Suppose that the problem (1) is a convex optimization problem and solvable. Then,
the optimal set X∗ is convex.
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Proof. If there is only one point in X∗, we can see that X∗ is clearly convex. Thus, we consider
the cases where there are multiple points in X∗.

Suppose that x,y ∈ X∗ and x ̸= y. As X∗ ⊆ D, the line segment connecting x and y belongs
to the feasible set D as well. Let θ ∈ (0, 1). Then,

f∗ ≤ f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y) = f∗,

leading to

f∗ = f(θx+ (1− θ)y).

This implies that, the points on the segment joining x and y belong to X∗, and thus X∗ is convex.
The proof is complete.

Definition 3. A feasible point x is locally optimal if there is a δ > 0 such that

f(x) = inf{f(z) : x ∈ D, ∥z− x∥ < δ}.

Theorem 1. Suppose that the problem (1) is a convex optimization problem and solvable. Then,
if x is a local optimum, it is also a global optimum.

Proof. Let y ∈ D be an arbitrary feasible point other than x. Thus, to show that the claim holds,
it suffices to show that,

f(x) ≤ f(y). (3)

As x is a local optimum, we can find a δ > 0 such that

f(x) ≤ f(z), ∀ z ∈ D ∩B := {z : ∥z− x∥ < δ}.

Clearly, if y ∈ B, the inequality (3) holds. Thus, we only need to consider the case where y /∈ B,
i.e.,

∥y − x∥ ≥ δ.

Due to the convexity of D, all the points on the line segment ℓ joining x and y belong to D.
Let

θ = 1− δ

2∥y − x∥
,

and

z0 = θx+ (1− θ)y.

We can see that z0 is on the line segment ℓ as θ ∈ (0, 1), and

∥z0 − x∥ = δ

2
.

This implies that z0 ∈ B and thus

f(x) ≤ f(z0). (4)

Combining with the convexity of f , we have

f(x) ≤ f(z0) ≤ θf(x) + (1− θ)f(y).

By moving θf(x) to the LHS, and dividing both sides by (1 − θ), we can see that the inequality
(3) holds. This completes the proof.
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Remark 2. We can show Theorem 1 by contradiction. This approach is inspired by the epigraph.
Suppose that x is not the global optimum, that is, we can find a feasible solution y such that

f(y) < f(x). Then, for any θ ∈ [0, 1],

f((1− θ)x+ θy) = f(x+ θ(y − x)) ≤ f(x) + θ(f(y)− f(x)) < f(x),

which implies that we can not find a neighborhood Bϵ(x) = {z : ∥z − x∥ < ϵ} of x such that
f(x) ≤ f(z) for all z ∈ Bϵ(x). This contradict the fact that x is a local optimum. Thus, the proof
is complete.

Remark 3. Another way—which is much easier—to show Theorem 1 is by noting that, for any z
lying on the line segment joining x and y, we have

f(z) ≤ max{f(x), f(y)}.

Proposition 2. Suppose that the problem (1) is solvable. Then, if f is strictly convex, the problem
(1) has a unique global optimum.

Proposition 3. Consider the problem (1). If f is strongly convex and continuous over its domain,
and the feasible set is closed, then the problem (1) is solvable and has a unique global optimum.

3 Optimality Conditions

Theorem 2. Suppose that the problem (1) is solvable. If f is continuously differentiable, then x
is optimal if and only if x ∈ D and

⟨∇f(x),y − x⟩ ≥ 0, ∀y ∈ D. (5)

Proof.
⇐ Suppose that the inequality (5) holds. Combining the convexity of f leads to

f(y) ≥ f(x) + ⟨∇f(x),y − x⟩
⇒ f(y) ≥ f(x), ∀y ∈ D.

⇒ Suppose that x is optimal. Then,

f(x+ t(y − x))− f(x)

t
≥ 0, ∀ t ∈ (0, 1].

Letting t goes to zero on both sides leading to

⟨∇f(x),y − x⟩ = lim
t↓0

f(x+ t(y − x))− f(x)

t
≥ 0.

This completes the proof.

Question 1. Recall that, for closed convex set C ⊆ Rn and a point x ∈ Rn with x /∈ C, a point
z ∈ C is the projection of x on C if and only if

⟨x− z,y − z⟩ ≤ 0, ∀y ∈ C.

The inequality is the so-called variational inequality. Can you show that the above variational
inequality holds by Theorem 2?
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Corollary 1. Suppose that the function f is continuously differentiable in problem (1). If x∗ is an
interior point of D, then

x∗ ∈ argmin
x∈D

f(x)⇔ ∇f(x∗) = 0.

If we do not require the differentiability of f , we have the counterparts of Theorem 2 and
Corollary 1 as follows.

Proposition 4. Suppose that the problem (1) is solvable. If x ∈ int (dom f), then x is optimal if
and only if x ∈ D and there exists a g ∈ ∂f(x) such that

⟨g,y − x⟩ ≥ 0, ∀y ∈ D. (6)

Corollary 2. Suppose that the problem (1) is solvable. If x∗ is an interior point of D, then

x∗ ∈ argmin
x∈D

f(x)⇔ 0 ∈ ∂f(x∗).

Example 1. Let f(x) = |x|, where x ∈ R. Find x∗.

Solution: By Corollary 2, we can see that

0 ∈ ∂f(x∗).

As we have seen that

∂f(x) =


1, if x > 0

[−1, 1], if x = 0

−1, if x < 0

,

we can conclude that x∗ = 0. ■

Example 2. Lasso takes the form of

min
w∈Rn

1

n
∥y −Xw∥2 + λ∥w∥1. (7)

Suppose that ŵ solves the above problem. Please write down the optimality condition at ŵ.

4 Problem Setup

We consider the unconstrained optimization problem as follows.

min
x∈Rn

F (x) = f(x) + g(x). (8)

We further assume that

1. g : Rn → R is a continuous convex function, which is possibly nonsmooth;

2. the objective function f is convex and continuously differentiable, and thus

f(y) ≥ f(x) + ⟨∇f(x),y − x⟩, ∀x,y; (9)
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3. the gradient of function f is Lipschitz continous, i.e.,

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥, (10)

where L > 0 is the so-called Lipschitz constant;

4. the problem in (8) is solvable, i.e., there exists x∗ such that

F (x∗) = F ∗ = minF (x). (11)

Notice that, the point x∗ that satisfies Eq. (11) may not be unique.

5 The Proximal Gradient Algorithm

We introduce an efficient algorithm to solve the problem (8), called Iterative Shrinkage-Thresholding
Algorithm (ISTA) [1], which is a special case of the popular proximal gradient methods for
solving nonsmooth optimization problems.

5.1 The basic approximation model

Lemma 1. Suppose that a function f is continuously differentiable. If the gradient of f is Lipschitz
continuous with Lipschitz constant L, i.e., the inequality (10) holds, then we have

f(y) ≤ f(x) + ⟨∇f(x),y − x⟩+ L

2
∥y − x∥2. (12)

Proof. Suppose that the inequality (10) holds. We have

f(y) =f(x) +

∫ 1

0
⟨∇f(x+ t(y − x)),y − x⟩dt

=f(x) + ⟨∇f(x),y − x⟩+
∫ 1

0
⟨∇f(x+ t(y − x))−∇f(x),y − x⟩dt

≤f(x) + ⟨∇f(x),y − x⟩+
∫ 1

0
∥∇f(x+ t(y − x))−∇f(x)∥∥y − x∥dt

≤f(x) + ⟨∇f(x),y − x⟩+
∫ 1

0
Lt∥y − x∥2dt

≤f(x) + ⟨∇f(x),y − x⟩+ L

2
∥y − x∥2,

which completes the proof.

Consider the following quadratic approximation of F at a given point xc:

Q(x;xc) = f(xc) + ⟨∇f(xc),x− xc⟩+
L

2
∥x− xc∥2 + g(x).

In view of Lemma 1, we can see that the function F (x) is unpper bounded by Q(x;xc), that is,

F (x) ≤ Q(x;xc), ∀x. (13)
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When x = xc, the inequality becomes equality. Moreover, we note that Q(x;xc) admits a unique
minimizer (why?)

p(xc) :=argmin{Q(x;xc) : x ∈ Rn} (14)

=argmin
x

{
g(x) +

L

2

∥∥∥∥x− (xc −
1

L
∇f(xc)

)∥∥∥∥2
}
.

Combining (13) and (14) leads to

F (p(xc)) ≤ Q(p(xc);xc) ≤ Q(xc;xc) = F (xc).

This implies that we can improve the function value F (xk) by minimizing its quadratic approxi-
mation Q(x;xk) based on its current solution xk. Repeating this procedure, we may expect that
the sequence (xk) converges to the optimal solution. Indeed, this is the idea of ISTA, which is
described in Algorithm 1.

Algorithm 1 ISTA

Input: An initial point x0, a Lipschitz constant L, and k = 0.
1: while the termination condition does not hold do
2: xk+1 ← p(xk),
3: k ← k + 1,
4: end while

In view of Algorithm 1, we can see that the key is how to find p(xk). This can be highly
nontrivial. Fortunately, for many popular g(·), we do have closed-form solutions, leading to highly
efficient implementations of ISTA.

Example 3 (The Shrinkage Operator). Please find p(w) for the Lasso problem (7).

Solution: Let f(w) = 1
n∥y −Xw∥2 and g(w) = λ∥w∥1. To simplify notations, let

w+ := p(w) = argmin
z

{
g(z) +

L

2

∥∥∥∥z− (w − 1

L
∇f(w)

)∥∥∥∥2
}
,

and

u = w − 1

L
∇f(w) = w − 2

Ln
X⊤(Xw − y).

Then, by Corollary 2, we can see that

0 ∈ ∂λ∥w+∥1 +
L

2
∇w∥w+ − u∥2 ⇒ L

λ
(u−w+) ∈ ∂∥w+∥1,

leading to

w+
i =


ui −

λ

L
, if ui >

λ

L
,

0, if |ui| ≤
λ

L
,

ui +
λ

L
, if ui < −

λ

L
.

(15)
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The mapping defined in Eq. (15) is the so-called shrinkage operator—which is a special case of the
proximal operator for the nonsmooth ℓ1 norm—leading to an efficient implementation of ISTA
for Lasso. ■

6 Convergence Property of ISTA

In this section, we analyze the convergence property of Algorithm 1. We first show that the function
values generated by Algorithm 1 monotonically decrease. This is where descent in gradient descent
comes from. Then, we show that the function values approach F ∗ with a rate of O(1/k). We will
see that the convexity and the Lipschitz continuity play a central role in analyzing the convergence
behaviors.

6.1 Convergence in terms of the Function Values

In this section, we show that F (xk) → F (x∗) with a convergence rate O(1/k). We first show a
descent lemma as follows.

Lemma 2. For any xc ∈ Rn, one has x+
c = p(xc) if and only if there exists s ∈ ∂g(x+

c ), such that

∇f(xc) + L(x+
c − xc) + s = 0.

Proof. The claim follows immediately by Corollary 2.

Lemma 3. Let xc ∈ Rn, L > 0, and x+
c = p(xc). Then, for any x ∈ Rn, we have

F (x)− F (x+
c ) ≥

L

2
∥x+

c − xc∥2 + L⟨xc − x,x+
c − xc⟩.

Proof. As F (x+
c ) ≤ Q(x+

c ;xc), we have

F (x)− F (x+
c ) ≥ F (x)−Q(x+

c ;xc).

As f, g are convex, we have

f(x) ≥ f(xc) + ⟨∇f(xc),x− xc⟩,
g(x) ≥ g(x+

c ) + ⟨s,x− x+
c ⟩,

where s is defined in Lemma 2. Summing the above two inequalities yields

F (x) ≥ f(xc) + ⟨∇f(xc),x− xc⟩+ g(x+
c ) + ⟨s,x− x+

c ⟩.

On the other hand, the definition of x+
c leads to

Q(x+
c ;xc) = f(xc) + ⟨∇f(xc),x

+
c − xc⟩+

L

2
∥x+

c − xc∥2 + g(x+
c ).

All together, we have

F (x)− F (x+
c ) ≥−

L

2
∥x+

c − xc∥2 + ⟨∇f(xc) + s,x− x+
c ⟩

=− L

2
∥x+

c − xc∥2 + L⟨xc − x+
c ,x− x+

c ⟩

=
L

2
∥x+

c − xc∥2 + L⟨x+
c − xc,xc − x⟩,

which completes the proof.
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Remark 4. When we set x := xc, Lemma 3 implies that

F (x+
c ) ≤ F (xc)−

L

2
∥x+

c − xc∥2.

That is, the sequence of function values F (x0), F (x1), F (x2), . . . generated by Algorithm 1 mono-
tonically decreases as long as xk+1 ̸= xk.

Theorem 3. Let (xk) be the sequence generated by Algorithm 1. Then, for any k ≥ 1

F (xk)− F (x∗) ≤ L∥x0 − x∗∥2

2k
, ∀x∗ ∈ X∗.

Proof. Invoking Lemma 3 with x = x∗, xc = xn, and x+
c = xn+1, we have

2

L
(F (x∗)− F (xn+1)) ≥∥xn+1 − xn∥2 + 2⟨xn+1 − xn,xn − x∗⟩

=∥x∗ − xn+1∥2 − ∥x∗ − xn∥2.

Summing this inequality over n = 0, . . . , k − 1 leads to

2

L

(
kF (x∗)−

k−1∑
n=0

F (xn+1)

)
≥ ∥x∗ − xk∥2 − ∥x∗ − x0∥2.

By noting that F (xk) monotonically decreases, we have

2k

L
(F (x∗)− F (xk)) ≥

2

L

(
kF (x∗)−

k−1∑
n=0

F (xn+1)

)
≥ ∥x∗ − xk∥2 − ∥x∗ − x0∥2,

which leads to

F (xk)− F (x∗) ≤ L

2k

(
∥x∗ − x0∥2 − ∥x∗ − xk∥2

)
≤ L∥x0 − x∗∥2

2k
.

This completes the proof.
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