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1 Introduction

An optimization problem is convex if both its objective function and problem domain are convex.
We have seen convex sets last lecture. In this lecture, we will focus on convex functions. The major
references of this lecture are [1, 2, 3].

2 Definitions

Definition 1. A function f : Rn → R is convex if dom f is a convex set, and if for all x,y ∈
dom f , and θ ∈ [0, 1], we have

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y). (1)

Figure 1: Convex function.

Question 1. What can we say about the continuity and differentiability of convex functions
in view of Definition 1?

Definition 2. We have several variants of convexity.

• A function f is strictly convex if strict inequality in Eq. (1) holds whenever x ̸= y and
θ ∈ (0, 1).

• A function f is strongly convex with parameter µ > 0 if f − µ
2∥x∥

2
2 is convex.

• A function f is concave if −f is convex, strictly concave if −f is strictly convex, and
strongly concave if −f is strongly convex.

Example 1. We give a few commonly seen examples of convex functions.

1. Affine function: f(x) = a⊤x+ b, where a ̸= 0 and b ∈ R.

2. Norms. Every norm on Rn and Rm×n.

3. Negative entropy: f(x) = x log x is convex on R++.

Definition 3 (Sublevel sets). The α-sublevel set of a function f : Rn → R is defined as

Cα = {x ∈ dom f : f(x) ≤ α}.

Proposition 1. Sublevel sets of a convex function are convex, for any value of α.
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3 Epigraph of a Function

We next provide another definition of the convexity of functions, which bridges the convexity of
functions and that of sets.

Definition 4. The epigraph of a function f : Rn → R is defined by

epi f = {(x, t) : x ∈ dom f, f(x) ≤ t},

which is a subset of Rn+1.

Epi means above, and thus epigraph means above the graph.

Theorem 1. A function is convex if and only of its epigraph is a convex set.

Proof. ⇒ Suppose that f is convex, and (x, t) and (y, s) belong to epi f (of course, x,y ∈ dom f).
To show that epi f is convex, it suffices to show that the line segment joining (x, t) and (y, s)
belongs to epi f , which is equivalent to

f(θx+ (1− θ)y) ≤ θt+ (1− θ)s, ∀ θ ∈ [0, 1].

This can be seen easily from the convexity of f :

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y) ≤ θt+ (1− θ)s,

as f(x) ≤ t and f(y) ≤ s by the definition of epigraph.
⇐ Suppose that epi f is convex. Consider (x, f(x)) and (y, f(y)). Clearly, we have (x, f(x)), (y, f(y)) ∈

epi f . As epi f is convex, the line segment joining (x, f(x)) and (y, f(y)) belongs to epi f , i.e.,

(θx+ (1− θ)y, θf(x) + (1− θ)f(y)) ∈ epi f.

The convexity of f follows immediately by the definition of epi f .

Theorem 1 is useful to tell the convexity of functions for some seemingly complicated cases.

Lemma 1. If f is a convex function, then for all x1,x2, . . . ,xm and all nonnegative αi, i =
1, 2, . . . ,m, such that

∑m
i=1 αm = 1, we have

f

(
m∑
i=1

αixm

)
≤

m∑
i=1

αif(xi).

Proof. We can see that, the points (
xi

f(xi)

)
, i = 1, 2, . . . ,m,

belong to the epigraph of f . As f is a convex function, its epigraph epi f is convex. Thus, any
convex combination of the points (xi, f(xi))

⊤, i = 1, 2, . . . ,m, belong to epi f , which leads to the
claim immediately.

Theorem 2. A function f : Rn is convex if and only if dom f is convex and its restriction to any
line intersecting its domain is convex. By restriction to a line we mean that, for any x0 ∈ dom f
and v ∈ Rn, the function

g(t) = f(x0 + tv),

is convex over its domain dom g = {t : x0 + tv ∈ dom f}.
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4 Smooth Convex Functions

4.1 First-order conditions

Theorem 3. Suppose that f is continuously differentiable. Then, f is convex if and only if dom f
is convex and

f(y) ≥ f(x) + ⟨∇f(x),y − x⟩︸ ︷︷ ︸
directional derivative

, ∀x,y ∈ dom f.

Proof. ⇒ The convexity of f implies that, ∀ θ ∈ (0, 1), we have

f(x+ θ(y − x)) ≤ f(x) + θ(f(y)− f(x)).

This leads to

f(y)− f(x) ≥ lim
θ↓0

f(x+ θ(y − x))− f(x)

θ
= ⟨∇f(x),y − x⟩.

⇐ Let z = θx+ (1− θ)y. Then,

f(x) ≥ f(z) + ⟨∇f(z),x− z⟩, f(y) ≥ f(z) + ⟨∇f(z),y − z⟩.

Multiplying the first inequality by θ, the second by 1− θ, and adding them together lead to

θf(x) + (1− θ)f(y) ≥ θf(z) + (1− θ)f(z) + θ⟨∇f(z),x− z⟩+ (1− θ)⟨∇f(z),y − z⟩
= f(z) + ⟨∇f(z), θ(x− z) + (1− θ)(y − z)⟩
= f(z) + ⟨∇f(z), θx+ (1− θ)y − z⟩
= f(z) + ⟨∇f(z), z− z⟩
= f(θx+ (1− θ)y),

which implies that f is convex. This completes the proof.

Theorem 4. Suppose that f is continuously differentiable. Then, f is convex if and only if dom f
is convex and

⟨∇f(x)−∇f(y),x− y⟩ ≥ 0, ∀x,y ∈ dom f.

Proof. ⇒ The convexity of f implies that

f(y) ≥ f(x) + ⟨∇f(x),y − x⟩, f(x) ≥ f(y) + ⟨∇f(y),x− y⟩.

Adding them together leads to desired result.
⇐ Let xt = x+ t(y − x) and g(t) = f(xt). Then,

f(y) = g(1) =g(0) +

∫ 1

0
g′(t)dt

=f(x) +

∫ 1

0
⟨∇f(x+ t(y − x)),y − x⟩dt

=f(x) +

∫ 1

0
⟨∇f(x+ t(y − x))−∇f(x) +∇f(x),y − x⟩dt

=f(x) + ⟨∇f(x),y − x⟩+
∫ 1

0

1

t
⟨∇f(xt)−∇f(x),xt − x⟩dt︸ ︷︷ ︸

≥0

≥f(x) + ⟨∇f(x),y − x⟩.

The proof is complete.
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Example 2. Consider the function f : Rn → R defined as the quadratic form

f(x) = ⟨x, Ax⟩,

where A ∈ Sn is a symmetric matrix. Then, f is convex if and only if A is a positive semidefinite
matrix, and strictly convex if and only if A is a positive definite matrix.

Clearly, we can see that dom f = Rn is convex. Moreover, as

∇f(x) = 2Ax,

we have

f(y)− f(x)− ⟨∇f(x),y − x⟩ =⟨y, Ay⟩ − ⟨x, Ax⟩ − 2⟨Ax,y − x⟩
=⟨y, Ay⟩+ ⟨x, Ax⟩ − 2⟨Ax,y⟩
=⟨y − x, A(y − x)⟩.

4.2 Second-order conditions

Theorem 5. Suppose that f is twice continuously differentiable. Then, f is convex if and only if
dom f is convex and ∇2f(x) ⪰ 0, for all x ∈ dom f .

Proof. ⇒ Suppose that f is convex. For an arbitrary point x ∈ dom f , let s ∈ Rn be a vector and
xt = x+ ts such that xt ∈ dom f for t ∈ [0, 1]. Then,

0 ≤ 1

t2
⟨∇f(xt)−∇f(x),xt − x⟩ = 1

t
⟨∇f(xt)−∇f(x), s⟩ (2)

=
1

t

〈∫ t

0
∇2f(x+ τs)sdτ, s

〉
=

1

t

∫ t

0
⟨∇2f(x+ τs)s, s⟩dτ.

By the mean value theorem, we can find an α ∈ (0, t) such that∫ t

0
⟨∇2f(x+ τs)s, s⟩dτ = t⟨∇2f(x+ αs)s, s⟩. (3)

Plugging Eq. (3) into the inequality in (2) leads to

0 ≤ ⟨∇2f(x+ αs)s, s⟩.

As the above inequality holds for any t > 0 and α ∈ (0, t), letting t ↓ 0 yields

0 ≤ ⟨∇2f(x)s, s⟩.

We further note that s is an arbitrary vector. Thus, the Hessian ∇2f(x) must be positive semi-
definite, i.e., ∇2f(x) ⪰ 0.

⇐ Suppose that ∇2f(x) ⪰ 0, for all x ∈ dom f . Let y ∈ dom f and g(t) = f(x + t(y − x)).
Then,

g′(t) =⟨∇f(x+ t(y − x)),y − x⟩,
g′′(t) =⟨∇2f(x+ t(y − x))(y − x),y − x⟩.
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Clearly, we can see that g′′(t) ≥ 0 for any t ∈ [0, 1]. The fundamental theorem of calculus yields

g(1) =g(0) +

∫ 1

0
g′(t)dt = g(0) +

∫ 1

0

[
g′(0) +

∫ t

0
g′′(τ)dτ

]
dt

=g(0) + g′(0) +

∫ 1

0

[∫ t

0
g′′(τ)dτ

]
dt.

By noting that the third term on the RHS is nonnegative as the integrand is nonnegative, we have

g(1) ≥ g(0) + g′(0),

which is equivalent to

f(y) ≥ f(x) + ⟨∇f(x),y − x⟩.

By Theorem 3, we can see that f is convex.

Example 3. The log-determinant function

f(X) = − log detX

is convex with dom f = Sn++.
To see this, let X0 ∈ Sn++ and V ∈ Sn. We define

g(t) = f(X0 + tV )

with dom g = {t : X0 + tV ∈ Sn++}. Thus

g(t) = − log det(X0 + tV )

= − log det(X
1/2
0 (I + tX

−1/2
0 V X

−1/2
0 )X

1/2
0 )

= −
n∑

i=1

log(1 + tλi)− log detX0,

where λ1, . . . , λn are the eigenvalues of X
−1/2
0 V X

−1/2
0 . Therefore, we have

g′(t) = −
n∑

i=1

λi

1 + tλi
, g′′(t) =

n∑
i=1

λ2
i

(1 + tλi)2
.

As g′′(t) ≥ 0, we conclude that f is convex.

4.3 Extended-value extensions

Definition 5. If f is convex, we define its extended-value extension f̃ : Rn → R ∪ {∞,−∞} by

f̃(x) =

{
f(x), x ∈ dom f,

∞, x /∈ dom f.

Example 4. Let C ⊆ Rn be a convex set. Its indicator function IC : C → R is zero for all x ∈ C.
The extended-value extension of IC is

ĨC(x) =

{
0, x ∈ C,

∞, x /∈ C.

Remark 1. The inequality in (1) holds for ĨC for all x, y ∈ Rn.
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5 Operations that Preserve Convexity

Proposition 2. Let f : Rm → (−∞,∞] be a given function, let A ∈ Rm×n and b ∈ Rm, and let

F (x) = f(Ax+ b), x ∈ Rn.

If f is convex, then F is also convex.

Proposition 3. Let fi : Rn → (−∞,∞], i = 1, . . . ,m, be given functions, let w1, . . . , wm be positive
salars, and

f(x) = w1f1(x) + · · ·+ wmfm(x), x ∈ Rn.

If f1, . . . , fm are convex, then f is also convex.

Proposition 4. Let fi : Rn → (−∞,∞] be given functions for i ∈ I, where I is an arbitrary index
set, and

f(x) = sup
i∈I

fi(x).

If fi, i ∈ I, are convex, then f is also convex.

Example 5. The weighted least squares

h(w) =
1

n
∥y −Xw∥2 + λΩ(w),

where Ω(w) = ∥w∥22 or Ω(w) = ∥w∥1, is convex for all λ > 0.

Example 6. For x ∈ Rn, let x[i] be the ith largest component of x. Then, the function

f(x) =

r∑
i=1

x[i],

is convex.

Example 7. For A ∈ Sn, its largest eigenvalue

f(A) = λmax(A)

is a convex function with respect to A, as

f(A) = max
∥v∥=1

⟨v, Av⟩,

and ⟨v, Av⟩ is linear with respect to A for all v.

Example 8. For a nonempty set C ⊂ Rn, the support function of C is defined as

fC(v) = sup{⟨v,x⟩ : x ∈ C}

with its domain dom fC = {v : fC(v) < ∞}. The support function is convex.
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