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Notice, to get the full credits, please show your solutions step by step.

Exercise 1: Proximal Operator

For a convex function f : Rn → R, we define its proximal operator at x by

proxf (x) = argmin
u∈dom f

{
f(u) +

1

2
∥u− x∥2

}
.

1. Recall the convex optimization problem in Lecture 08.

min
x∈Rn

F (x).

Please rewrite p(xc) using proximal operator.

2. The proximal operator has the following properties.

(a) If f is proper and close (which means epif is close), then for any x ∈ Rn,
proxf (x) exists and is unique. You can use the properties we have proved in
Homework 4 directly.

(b) If f is proper and close, then u = proxf (x) if and only if x− u ∈ ∂f(u).

3. The proximal operator satisfies the following equations.

(a) For λ ̸= 0 and a ∈ Rn, we let h(x) = f(λx+a), then proxh(x) =
1
λ

(
proxλ2f (λx+ a)− a

)
.

(b) For λ > 0, we let h(x) = λf
(
x
λ

)
, then proxh(x) = λ proxλ−1f

(
x
λ

)
.

(c) For a ∈ Rn, we let h(x) = f(x) + a⊤x, then proxh(x) = proxf (x− a).

4. Please find the proximal operator of the following functions.

(a) f(x) = ∥x∥2
(b) f(x) = IC(x), where C is a convex set.

Solution: ■
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Exercise 2: Proximal Gradient

Consider the following convex optimization problem

min
x

F (x) (1)

s.t.x ∈ D

where F : Rn → R is a proper convex function and D ⊆ Rn is a nonempty convex set
with D ⊆ dom F . Suppose that the problem (1) is solvable, and we do not require the
differentiability of F .

1. If x ∈ int (dom F ) ∩D and there exists a g ∈ ∂F (x) such that

⟨g,y− x⟩ ≥ 0, ∀y ∈ D,

show that x is optimal.

2. (Optional) If x ∈ int (dom F ) and x is optimal, show that x ∈ D and there exists a
g ∈ ∂F (x) such that

⟨g,y− x⟩ ≥ 0, ∀y ∈ D.

3. Please give an example to show that ∂F (x) can be empty.

4. Suppose f : Rn → R is twice continuously differentiable, and the Hessian matrix of f
is H(x). Let λmax represents the largest eigenvalue of H(x). If

λmax ≤ L, ∀z ∈ Rn,

please show that:

f(y) ≤ f(x) + ⟨∇f(x),y − x⟩+ L

2
∥y − x∥2.

In many cases, the function F can be decomposed into F = f + g, where g : Rn → R is
a continuous convex function, and f : Rn → R is a convex and continuously differentiable
function, whose gradient is Lipschitz continuous with the constant L. We can use ISTA,
which has been introduced in Lecture 08, to find min

x∈Rn
F (x).

5. For a given point xc, we consider the following quadratic approximation of F :

Q(x;xc) = f(xc) + ⟨∇f(xc),x− xc⟩+
L

2
∥x− xc∥2 + g(x).

Please show that it always admits a unique minimizer

p(xc) = argmin
x∈Rn

Q(x;xc).
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6. If we use ISTA to solve the Lasso problem, show that

w+
i =


zi +

λ

L
, if zi < −

λ

L
,

0, if |zi| ≤
λ

L
,

zi −
λ

L
, if zi >

λ

L
,

where z = wk −
2

Ln
X⊤(Xwk − y).

Solution: ■
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Exercise 3: [1] ISTA with Backtracking

Suppose that we would like to apply ISTA to solve the convex optimization problem

min
x∈Rn

F (x) = f(x) + g(x), (2)

where g : Rn → R is a continuous convex function, and f : Rn → R is a convex and contin-
uously differentiable function, whose gradient is Lipschitz continuous with the constant L.
We assume that Problem (2) is solvable, i.e., there exists x∗ such that

F (x∗) = F ∗ = min
x∈Rn

F (x).

In practice, however, a possible drawback of ISTA is that the Lipschitz constant L is not
always known or computable. For instance, if f(x) = ∥Ax−b∥22, the Lipschitz constant for
∇f depends on λmax(A⊤A), which is not always easily computable for large-scale problems.
To tackle this problem, we always equip ISTA with the backtracking stepsize rule as shown
in Algorithm 1.

Note that in Algorithm 1, QL and pL are defined as

QL(x;xc) = f(xc) + ⟨∇f(xc),x− xc⟩+
L

2
∥x− xc∥22 + g(x)

pL(xc) = argmin
x∈Rn

QL(x;xc).

Algorithm 1 ISTA with Backtracking
1: Input: An initial point x0, an initial constant L0 > 0, a threshold η > 1, and k = 1.
2: while the termination condition does not hold do
3: Find the smallest non-negative integer ik such that with L̃ = ηikLk−1

F (pL̃(xk−1)) ≤ QL̃(pL̃(xk−1);xk−1). (3)

4: Lk ← ηikLk−1, xk ← pLk
(xk−1),

5: k ← k + 1,
6: end while

1. Show that the sequence {F (xk)} produced by Algorithm 1 is non-increasing.

2. Show that Inequality (3) is satisfied for any L̃ ≥ L, where L is the Lipschitz constant
of ∇f , thus showing that for Algorithm 1 one has Lk ≤ ηL for every k ≥ 1.

3. Let {xk} be the sequence generated by Algorithm 1. Show that for any k ≥ 1 we have

F (xk)− F (x∗) ≤ ηL∥x0 − x∗∥22
2k

, ∀x∗ ∈ argmin
x∈Rn

F (x).

6



Homework 5

The above result means that the number of iterations of Algorithm 1 required to
obtain an ε-optimal solution, i.e., an x̂ such that F (x̂)− F (x∗) ≤ ε, is at most⌈

ηL∥x0 − x∗∥22
2ε

⌉
.

Solution: ■
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Exercise 4: Programming Exercise: Naive Bayes Classifier

We provide you with a data set that contains spam and non-spam emails (“hw5_nb.zip”).
Please use the Naive Bayes Classifier to detect the spam emails. Finish the following
exercises by programming. You can use your favorite programming language.

1. Remove all the tokens that contain non-alphabetic characters.

2. Train the Naive Bayes Classifier on the training set according to Algorithm 2.

3. Test the Naive Bayes Classifier on the test set according to Algorithm 3. You may
encounter a problem that the likelihood probabilities you calculate approach 0. How
do you deal with this problem?

4. Compute the confusion matrix, accuracy, precision, recall, and F-score.

5. Without the Laplace smoothing technique, complete the steps again.

Algorithm 2 Training Naive Bayes Classifier
Input: The training set with the labels D = {(xi, yi)}.

1: V ← the set of distinct words and other tokens found in D
2: for each target value c in the labels set C do
3: Dc ← the training samples whose labels are c

4: P (c)← |Dc|
|D|

5: Tc ← a single document by concatenating all training samples in Dc

6: nc ← |Tc|
7: for each word wk in the vocabulary V do
8: nc,k ← the number of times the word wk occurs in Tc

9: P (wk|c) =
nc,k+1
nc+|V|

10: end for
11: end for

Algorithm 3 Testing Naive Bayes Classifier
Input: An email x. Let xi be the ith token in x . I = ∅.

1: for i = 1, . . . , |x| do
2: if ∃wki ∈ V such that wki = xi then
3: I ← I ∪ i
4: end if
5: end for
6: predict the label of x by

ŷ = argmax
c∈C

P (c)
∏
i∈I

P (wki |c)

Solution: ■
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Exercise 5: Logistic Regression and Newton’s Method

Given the training data D = {(xi, yi)}ni=1, where xi ∈ Rd and yi ∈ {0, 1}. Let

I+ = {i : i ∈ [n], yi = 1},
I− = {i : i ∈ [n], yi = 0},

where [n] = {1, 2, . . . , n}. We assume that I+ and I− are not empty.
Then, we can formulate the logistic regression of the form.

min
w

L(w) = − 1

n

n∑
i=1

(
yi log

(
exp(⟨w,xi⟩)

1 + exp(⟨w,xi⟩)

)
+ (1− yi) log

(
1

1 + exp(⟨w,xi⟩)

))
, (4)

where w ∈ Rd+1 is the model parameter to be estimated and x⊤
i = (1,x⊤

i ).

1. (a) Suppose that the training data is strictly linearly separable, that is, there exists
ŵ ∈ Rd+1 such that

⟨ŵ, x̄i⟩ > 0, ∀ i ∈ I+,
⟨ŵ, x̄i⟩ < 0, ∀ i ∈ I−.

Show that problem (4) has no solution.
(b) Suppose that the training data is NOT linearly separable, that is, for all w ∈

Rd+1, there exists i ∈ [n] such that

⟨w, x̄i⟩ < 0, if i ∈ I+,

or

⟨w, x̄i⟩ > 0, if i ∈ I−.

Show that problem (4) always admits a solution.

2. Suppose that X = (x1,x2, . . . ,xn)
⊤ ∈ Rn×(d+1) and rank(X) = d + 1. Show that

L(w) is strictly convex, i.e., for all w1 ̸= w2,

L(tw1 + (1− t)w2) < tL(w1) + (1− t)L(w2), ∀ t ∈ (0, 1).

Solution: ■
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Exercise 6: Convergence of Stochastic Gradient Descent for Convex Function

Consider an optimization problem

min
w

F (w) =
1

n

n∑
i=1

fi(w), (5)

where the objective function F is continuously differentiable and strongly convex with con-
vexity parameter µ > 0. Suppose that the gradient of F , i.e., ∇F , is Lipschitz continuous
with Lipschitz constant L, and F can attain it minimum F ∗ at w∗. We use the stochastic
gradient descent(SGD) algorithm introduced in Lecture 12 to solve the problem (5). Let
the solution sequence generated by SGD be (wk).

1. Please show that ∀w ∈ dom F , the following inequality

F (w)− F ∗ ≤ 1

2µ
∥∇F (w)∥2 (6)

holds, and interpret the role of strong convexity based on this.

2. In practice, for the same problem, SGD enjoys less time cost but more iteration steps
than gradient descent methods and may suffer from non-convergence. As a trade-off
between SGD and gradent descent approaches, consider using mini-batch samples to
estimate the full gradient. Taking kth iteration as an example, instead of picking a
single sample, we randomly select a subset Sk of the sample indices to compute the
update direction

gk(ξk) =
1

|Sk|
∑
i∈Sk

∇fi(wk)

where ξk is the selected samples. For simplicity, suppose that the mini-batches in all
iterations are of constant size, i.e., |Sk| = nm, and the stepsize α is fixed. Please show
that for mini-batch SGD, there holds

Eξ0:ξk−1
[F (wk)− F ∗] ≤ LM

2µnm
α+ (1− µα)k(F (w0)− F ∗ − LM

2µnm
α)

linear−−−→ LM

2µnm
α.

Moreover, point out the advantage of mini-batch SGD compared to SGD in terms of
the number of the iteration step.

Solution: ■
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