Introduction to Machine Learning Fall 2024 University of Science and Technology of China

Lecturer: Jie Wang	Homework 4
Posted: Nov. 6, 2024	Due: Nov. 14, 2024

Notice, to get the full credits, please present your solutions step by step.

Exercise 1: Convex Functions

- 1. Please show that the following functions are convex.
 - (a) $f(\mathbf{x}) = \sum_{i=1}^{k} x_{[i]}$ on **dom** $f = \mathbb{R}^{n}$, where $1 \leq k \leq n$ and $x_{[i]}$ denotes the *i*th largest component of \mathbf{x} .
 - (b) The negative entropy, i.e.,

$$f(\mathbf{p}) = \sum_{i=1}^{n} p_i \log p_i$$

on **dom** $f = \{\mathbf{p} \in \mathbb{R}^n : 0 < p_i \leq 1, \sum_{i=1}^n p_i = 1\}$, where p_i denotes the *i*th component of **p**.

- (c) The *p*-norms, i.e., $f(\mathbf{X}) = \|\mathbf{X}\|_p$ on **dom** $f = \mathbb{R}^{m \times n}$.
- 2. Please show that a function f is convex if and only if **dom** f is convex and its restriction to any line intersecting its domain is convex, i.e., for any $\mathbf{x}_0 \in \mathbf{dom} f$ and $\mathbf{v} \in \mathbb{R}^n$, the function

$$g(t) = f(\mathbf{x}_0 + t\mathbf{v})$$

is convex over its domain **dom** $g = \{t \in \mathbb{R} : \mathbf{x}_0 + t\mathbf{v} \in \mathbf{dom} f\}.$

(**Hint:** you may prove the sufficiency by contradiction.)

3. (Optional) Please show that a continuously differentiable function f is strongly convex with parameter $\mu > 0$ if and only if

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{\mu}{2} \|\mathbf{y} - \mathbf{x}\|_2^2, \quad \forall \, \mathbf{x}, \mathbf{y} \in \mathbb{R}^n.$$

- 4. (Optional) Suppose that f is twice continuously differentiable and strongly convex with parameter $\mu > 0$. Please show that $\mu \leq \lambda_{\min}(\nabla^2 f(\mathbf{x}))$ for any $\mathbf{x} \in \mathbb{R}^n$, where $\lambda_{\min}(\nabla^2 f(\mathbf{x}))$ is the smallest eigenvalue of $\nabla^2 f(\mathbf{x})$.
- 5. Suppose that $f : \mathbb{R}^n \to \mathbb{R}$ is twice continuously differentiable, and the gradient of f is Lipschitz continuous, i.e.,

$$\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|_2 \le L \|\mathbf{x} - \mathbf{y}\|_2, \quad \forall \, \mathbf{x}, \mathbf{y} \in \mathbb{R}^n,$$

where L > 0 is the Lipschitz constant. Please show that $\lambda_{\max}(\nabla^2 f(\mathbf{x})) \leq L$ for any $\mathbf{x} \in \mathbb{R}^n$, where $\lambda_{\max}(\nabla^2 f(\mathbf{x}))$ is the largest eigenvalue of $\nabla^2 f(\mathbf{x})$.

6. Consider the problem

$$\min_{\mathbf{x}\in\mathbb{R}^n} f(\mathbf{x}),\tag{1}$$

where $f : \mathbb{R}^n \to \mathbb{R}$ is continuously differentiable and convex, and **dom** f is closed.

- (a) Please show that the α -sublevel set of f, i.e., $C_{\alpha} = \{\mathbf{x} \in \mathbf{dom} \ f : f(\mathbf{x}) \leq \alpha\}$ is closed.
- (b) Please give an example to show that Problem (1) may be unsolvable even if f is strictly convex.
- (c) Suppose that f can attain its minimum. Please show that the optimal set $C = \{\mathbf{y} : f(\mathbf{y}) = \min_{\mathbf{x}} f(\mathbf{x})\}$ is closed and convex. Does this property still hold if **dom** f is not closed?
- (d) Suppose that f is strongly convex with parameter $\mu > 0$. Please show that Problem (1) admits a unique solution.

Exercise 2: Operations that Preserve Convexity

1. Let $f : \mathbb{R}^m \to (-\infty, +\infty]$ be a given convex function, $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$. Please show that

$$F(\mathbf{x}) = f(\mathbf{A}\mathbf{x} + \mathbf{b}), \quad \mathbf{x} \in \mathbb{R}^n.$$

is convex.

2. Let $f_i : \mathbb{R}^n \to (-\infty, +\infty], i = 1, \dots, m$, be given convex functions. Please show that

$$F(\mathbf{x}) = \sum_{i=1}^{m} w_i f_i(\mathbf{x})$$

is convex, where $w_i \ge 0, i = 1, \ldots, m$.

3. Let $f_i : \mathbb{R}^n \to (-\infty, +\infty]$ be given convex functions for $i \in I$, where I is an arbitrary index set. Please show that the supremum

$$F(\mathbf{x}) = \sup_{i \in I} f_i(\mathbf{x})$$

is convex.

Exercise 3: Subdifferentials

Calculation of subdifferentials (you need to finish at least four of the problems).

1. Let $H \subset \mathbb{R}^n$ be a hyperplane. The extended-value extension of its indicator function I_H is

$$\tilde{I}_H(\mathbf{x}) = \begin{cases} 0, & \mathbf{x} \in H, \\ \infty, & \mathbf{x} \notin H. \end{cases}$$

Find $\partial \tilde{I}_H(\mathbf{x})$.

- 2. Let $f(\mathbf{x}) = \exp \|\mathbf{x}\|_1$, $\mathbf{x} \in \mathbb{R}^n$. Find $\partial f(\mathbf{x})$.
- 3. For $\mathbf{x} \in \mathbb{R}^n$, let $x_{[i]}$ be the i^{th} largest component of \mathbf{x} . Find the subdifferentials of

$$f(\mathbf{x}) = \sum_{i=1}^k x_{[i]}$$

- 4. Let $f(\mathbf{x}) = \|\mathbf{x}\|_{\infty}, \mathbf{x} \in \mathbb{R}^n$. Find $\partial f(\mathbf{x})$.
- 5. Let $f(X) = \max_{1 \le i \le n} |\lambda_i|$, where $X \in \mathbb{S}^n$ and $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of X. Find $\partial f(X)$.

(Hint: you can refer to Example 7 in Lec06.)

References