Introduction to Machine Learning

Fall 2024

University of Science and Technology of China

Lecturer: Jie Wang

Posted: Sep. 19, 2024

Homework 1

Due: Oct. 8, 2024

Notice, to get the full credits, please present your solutions step by step.

Exercise 1: Bolzano-Weierstrass Theorem

The Least Upper Bound Axiom

Any nonempty set of real numbers with an upper bound has a least upper bound. That is, $\sup C$ always exists for a nonempty bounded above set $C \subset \mathbb{R}$.

Please show the following statements from the least upper bound axiom.

1. Let C be a nonempty subset of \mathbb{R} that is bounded above. Prove that $u = \sup C$ if and only if u is an upper bound of C and

$$\forall \epsilon > 0, \exists a \in C \text{ such that } a > u - \epsilon.$$

2. Suppose (x_n) be a sequence of real numbers such that $x_n \in [a, b], \forall n$, please show that there exists $c \in [a, b]$ and a subsequence (x_{n_k}) of (x_n) such that $x_{n_k} \to c$ as $k \to \infty$.

Exercise 2: Limit and Limit Points

- 1. Show that $\{\mathbf{x}_n\}$ in \mathbb{R}^n converges to $\mathbf{x} \in \mathbb{R}^n$ if and only if $\{\mathbf{x}_n\}$ is bounded and has a unique limit point \mathbf{x} .
- 2. (Limit Points of a Set). Let C be a subset of \mathbb{R}^n . A point $\mathbf{x} \in \mathbb{R}^n$ is called a limit point of C if there is a sequence $\{\mathbf{x}_n\}$ in C such that $\mathbf{x}_n \to \mathbf{x}$ and $\mathbf{x}_n \neq \mathbf{x}$ for all positive integers n. If $\mathbf{x} \in C$ and \mathbf{x} is not a limit point of C, then \mathbf{x} is called an isolated point of C. Let C' be the set of limit points of the set C. Please show the following statements.
 - (a) If $C = (0,1) \cup \{2\} \subset \mathbb{R}$, then C' = [0,1] and x = 2 is an isolated point of C.
 - (b) The set C' is closed.

Exercise 3: Norms

In this exercise, we will give some examples of norms and a useful theorem related to norms in **finite** dimensional vector space.

1. l_p norm: The l_p norm is defined by

$$\|\mathbf{x}\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

where $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$ and $p \ge 1$.

- (a) Please show that the l_p norm is a norm.
- (b) Please show that the following equality.

$$\lim_{p \to \infty} \|\mathbf{x}\|_p = \|\mathbf{x}\|_{\infty} = \max_{1 \le i \le n} |x_i|.$$

The l_{∞} norm is defined as above.

- 2. **Operator norms:** Suppose that $\mathbf{A} \in \mathbb{R}^{m \times n}$, which can be viewed as a linear transformation from \mathbb{R}^n to \mathbb{R}^m . Please show the following operator norms' equality.
 - (a) Let $\|\mathbf{A}\|_1 = \sup_{\mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{A}\mathbf{x}\|_1}{\|\mathbf{x}\|_1}$. Please show that

$$\|\mathbf{A}\|_1 = \max_{1 \le j \le n} \sum_{i=1}^m |a_{ij}|.$$

(b) Let $\|\mathbf{A}\|_{\infty} = \sup_{\mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{A}\mathbf{x}\|_{\infty}}{\|\mathbf{x}\|_{\infty}}$. Please show that

$$\|\mathbf{A}\|_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{n} |a_{ij}|.$$

3. (Optional) Dual norm: Let $\|\cdot\|$ be a norm on \mathbb{R}^n . The dual norm of $\|\cdot\|$ is defined by

$$\|\mathbf{x}\|_* = \sup_{\mathbf{y} \in \mathbb{R}^n, \|\mathbf{y}\| \le 1} \mathbf{y}^\top \mathbf{x}.$$

(a) Please show that the dual of the Euclidean norm is the Euclidean norm itself. i.e.,

$$\sup_{\mathbf{y} \in \mathbb{R}^n, \|\mathbf{y}\|_2 \le 1} \mathbf{y}^\top \mathbf{x} = \|\mathbf{x}\|_2.$$

(b) Please show that the dual of the l_1 norm is the l_{∞} norm. i.e.,

$$\sup_{\mathbf{y} \in \mathbb{R}^n, \|\mathbf{y}\|_1 \le 1} \mathbf{y}^\top \mathbf{x} = \|\mathbf{x}\|_{\infty}.$$

3

4. (Optional) Equivalence of norms:

(a) Let $\|\cdot\|_a$ and $\|\cdot\|_b$ be two norms on \mathbb{R}^n . We say that $\|\cdot\|_a$ and $\|\cdot\|_b$ are equivalent if there exist two positive constants c_1 and c_2 such that

$$c_1 \|\mathbf{x}\|_a \le \|\mathbf{x}\|_b \le c_2 \|\mathbf{x}\|_a, \quad \forall \mathbf{x} \in \mathbb{R}^n.$$

Please show that all norms on \mathbb{R}^n are equivalent.

- (b) Suppose $\mathbf{X_1} = (\mathbb{R}^n, \|\cdot\|_a)$ and $\mathbf{X_2} = (\mathbb{R}^n, \|\cdot\|_b)$ are two normed vector spaces. Please show that if $(\mathbf{x_n})$ converges to \mathbf{x} in $\mathbf{X_1}$, then $(\mathbf{x_n})$ also converges to \mathbf{x} in $\mathbf{X_2}$, and vice versa.
- (c) The unit ball in X_1 and X_2 may be different. However, the open set in normed vector space X_1 is also open in normed vector space X_2 , and vice versa. Please show that by the theorem of equivalence of norms.
- (d) Now we can prove that if f is continuous in normed vector space $\mathbf{X_1}$, then f is also continuous in normed vector space $\mathbf{X_2}$, and vice versa. Please show that by the conclusion in (c).

Exercise 4: Open and Closed Sets

The norm ball $\{\mathbf{y} \in \mathbb{R}^n : \|\mathbf{y} - \mathbf{x}\|_2 < r, \mathbf{x} \in \mathbb{R}^n\}$ is denoted by $B_r(\mathbf{x})$.

- 1. Given a set $C \subset \mathbb{R}^n$, please show the following are equivalent.
 - (a) The set C is closed; that is $\mathbf{cl}\ C = C$.
 - (b) The complement of C is open.
 - (c) If $B_{\epsilon}(\mathbf{x}) \cap C \neq \emptyset$ for every $\epsilon > 0$, then $\mathbf{x} \in C$.
- 2. Given $A \subset \mathbb{R}^n$, a set $C \subset A$ is called open in A if

$$C = \{ \mathbf{x} \in C : B_{\epsilon}(\mathbf{x}) \cap A \subset C \text{ for some } \epsilon > 0 \}.$$

A set C is said to be closed in A if $A \setminus C$ is open in A.

- (a) Let $B = [0,1] \cup \{2\}$. Please show that [0,1] is not an open set in \mathbb{R} , while it is both open and closed in B.
- (b) Please show that a set $C \subset A$ is open in A if and only if $C = A \cap U$, where U is open in \mathbb{R}^n .

Exercise 5: Extreme Value Theorem and Fixed Point

- 1. Show that any continuous mapping from the closed interval [0,1] to itself has a fixed point, i.e. $\forall f : [0,1] \to [0,1], \exists x \in [0,1], \text{ such that } f(x) = x.$
- 2. Show that a continuous mapping from the open interval (0,1) to itself may have no fixed point, i.e. $\exists f:(0,1)\to(0,1)$, such that for all $x\in(0,1)$, $f(x)\neq x$.
- 3. If a continuous mapping $f:[0,1]\to [0,1]$ satisfies $f(0)=0,\ f(1)=1,$ and for some $n\in\mathbb{N},$

$$f^{(n)}(x) := (f \circ f \circ \dots \circ f)(x) \equiv x$$

for all $x \in [0, 1]$, show that for all $x \in [0, 1]$,

$$f(x) \equiv x$$
.

(**Hint:** consider the monotonicity of f.)

- 4. Show that if a non-decreasing function $f:[0,1] \to \mathbb{R}_+$ is continuous, then there exists a constant $\lambda > 0$, such that for any point $x \in [0,1]$, at least one of the following two cases of the function λf can be realized:
 - (a) x is a fixed point of λf .
 - (b) $(\lambda f)^{(n)}(x)$ tends to a fixed point of λf , i.e. $\lim_{n\to\infty} (\lambda f)((\lambda f)^{(n)}(x)) = \lim_{n\to\infty} (\lambda f)^{(n)}(x)$,

where $(\lambda f)(x) = \lambda * (f(x))$.

(Hint: first consider using the extreme value theorem.)

Exercise 6: Linear Space

- 1. Let $P_n[x]$ be the set of all polynomials on \mathbb{R} with degree at most n. Show that $P_n[x]$ is a linear space.
- 2. Let V be a linear space, $\lambda \in \mathbb{F}$ be an arbitrary number, $v \in V$ be an arbitrary vector. Show that:
 - (a) The zero vectors of V is unique.
 - (b) The additive inverse of v is unique, i.e. $\forall v \in V$, there exists only one $v' \in V$, such that $v + v' = \mathbf{0}$. Moreover, $v' = (-1) \cdot v \triangleq -v$.
 - (c) $\lambda \cdot \mathbf{0} = 0 \cdot v = \mathbf{0}, \forall \lambda \in \mathbb{F}, v \in V.$
 - (d) If $\lambda \cdot v = \mathbf{0}$, then $\lambda = 0$ or $v = \mathbf{0}$.
- 3. How many vectors can a linear space have? How many subspaces does a linear space have at least?

Exercise 7: Basis and Coordinates

Suppose that $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}$ is a basis of an *n*-dimensional vector space V.

- 1. Show that $\{\lambda_1 \mathbf{a}_1, \lambda_2 \mathbf{a}_2, \dots, \lambda_n \mathbf{a}_n\}$ is also a basis of V for nonzero scalars $\lambda_1, \lambda_2, \dots, \lambda_n$.
- 2. Let $V = \mathbb{R}^n$, $\mathbf{A} = (\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n) \in \mathbb{R}^{n \times n}$ and $\mathbf{B} = (\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n) \in \mathbb{R}^{n \times n}$. $(\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n) = (\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n)\mathbf{P}$, where $\mathbf{P} \in \mathbb{R}^{n \times n}$ and $\mathbf{b}_i \in \mathbb{R}^n$, for any $i \in \{1, \dots, n\}$. Show that $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ is also a basis of V for any invertible matrix \mathbf{P} .
- 3. Suppose that the coordinate of a vector \mathbf{v} under the basis $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}$ is $\mathbf{x} = (x_1, x_2, \dots x_n)$.
 - (a) What is the coordinate of **v** under $\{\lambda_1 \mathbf{a}_1, \lambda_2 \mathbf{a}_2, \dots, \lambda_n \mathbf{a}_n\}$?
 - (b) What are the coordinates of $\mathbf{w} = \mathbf{a}_1 + \cdots + \mathbf{a}_n$ under $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}$ and $\{\lambda_1 \mathbf{a}_1, \lambda_2 \mathbf{a}_2, \dots, \lambda_n \mathbf{a}_n\}$? Note that $\lambda_i \neq 0$ for any $i \in \{1, \dots, n\}$.
- 4. Suppose $\mathbf{a}=(1,0)$, $\mathbf{b}=(0,1)$ and $\mathbf{c}=(-1,0)$ are three unit vectors in two-dimensional space. $\mathbf{v}=(x,y)$ is a vector in two-dimensional space.
 - (a) Please find the coordinate of \mathbf{v} under basis $\{\mathbf{c},\mathbf{b}\}$? Is the coordinate unique?
 - (b) Please find all the possible combination coefficients of **v** under vectors **a**, **b** and **c**, i.e., $\mathbf{v} = x'\mathbf{a} + y'\mathbf{b} + z'\mathbf{c}$.
 - (c) (**Bonus**) Each set of combination coefficients (x', y', z') in (b) forms a vector in \mathbb{R}^3 . Please find the combination coefficients with minimum ℓ_1 -norm.

Exercise 8: Derivatives with matrices

Definition 1 (Differentiability). [1] Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be a function, $\mathbf{x}_0 \in \mathbb{R}^n$ be a point, and let $L: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. We say that f is differentiable at \mathbf{x}_0 with derivative L if we have

$$\lim_{\mathbf{x} \to \mathbf{x}_0; \mathbf{x} \neq \mathbf{x}_0} \frac{\|f(\mathbf{x}) - f(\mathbf{x}_0) - L(\mathbf{x} - \mathbf{x}_0)\|_2}{\|\mathbf{x} - \mathbf{x}_0\|_2} = 0.$$

We denote this derivative by $f'(\mathbf{x}_0)$.

- 1. Let $\mathbf{x}, \mathbf{a} \in \mathbb{R}^n$ and $\mathbf{y} \in \mathbb{R}^m$. Consider the functions as follows. Please show that they are differentiable and find $f'(\mathbf{x})$.
 - (a) $f(\mathbf{x}) = \mathbf{a}^{\top} \mathbf{x}$.
 - (b) $f(\mathbf{x}) = \mathbf{x}^{\top} \mathbf{x}$.
 - (c) $f(\mathbf{x}) = \|\mathbf{y} \mathbf{A}\mathbf{x}\|_2^2$, where $\mathbf{A} \in \mathbb{R}^{m \times n}$.
- 2. Please follow Definition 1 and give the definition of the differentiability of the functions $f: \mathbb{R}^{n \times n} \to \mathbb{R}$.
- 3. Let $f(\mathbf{X}) = \operatorname{tr}(\mathbf{A}^{\top}\mathbf{X})$, where $\mathbf{A}, \mathbf{X} \in \mathbb{R}^{n \times m}$, and $\operatorname{tr}(\cdot)$ denotes the trace of a matrix. Please discuss the differentiability of f and find f' if it is differentiable.
- 4. (Optional)Let $f(\mathbf{X}) = \det(\mathbf{X})$, where $\det(\mathbf{X})$ is the determinant of $\mathbf{X} \in \mathbb{R}^{n \times n}$. Please discuss the differentiability of f rigorously according to your definition in the last part. If f is differentiable, please find $f'(\mathbf{X})$.
- 5. (Optional)Let \mathbf{S}_{++}^n be the space of all positive definite $n \times n$ matrices. Prove the function $f: \mathbf{S}_{++}^n \to \mathbb{R}$ defined by $f(\mathbf{X}) = \operatorname{tr} \mathbf{X}^{-1}$ is differentiable on \mathbf{S}_{++}^n . (Hint: Expand the expression $(\mathbf{X} + t\mathbf{Y})^{-1}$ as a power series.)

Exercise 9: Rank of Matrices

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{n \times p}$.

- 1. Please show that
 - (a) $rank(\mathbf{A}) = rank(\mathbf{A}^{\top}) = rank(\mathbf{A}^{\top}\mathbf{A}) = rank(\mathbf{A}\mathbf{A}^{\top});$
 - (b) $\mathbf{rank}(\mathbf{AB}) \leq \mathbf{rank}(\mathbf{A});$ (please give an example when the equality holds)
- 2. The *column space* of \mathbf{A} is defined by

$$C(\mathbf{A}) = \{ \mathbf{y} \in \mathbb{R}^m : \mathbf{y} = \mathbf{A}\mathbf{x}, \, \mathbf{x} \in \mathbb{R}^n \}.$$

The $null\ space\ of\ \mathbf{A}$ is defined by

$$\mathcal{N}(\mathbf{A}) = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} = 0 \}.$$

Notice that, the rank of A is the dimension of the column space of A.

Please show that

- (a) $\operatorname{rank}(\mathbf{A}) = \dim(\mathcal{C}(\mathbf{A});$
- (b) $\operatorname{rank}(\mathbf{A}) + \dim(\mathcal{N}(\mathbf{A})) = n.$
- 3. Given that

$$rank(AB) = rank(B) - dim(C(B) \cap \mathcal{N}(A)). \tag{1}$$

Please show the results in 1.(b) by Eq. (1).

Exercise 10: Properties of Eigenvalues and Singular Values

1. Suppose the maximum eigenvalue, minimum eigenvalue and maximum singular value of a given symmetric matrix $\mathbf{A} \in S^n$ are denoted by $\lambda_{\max}(\mathbf{A})$ and $\lambda_{\min}(\mathbf{A})$, respectively. Please show that

$$\lambda_{\max}(\mathbf{A}) = \sup_{\mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq \mathbf{0}} \frac{\mathbf{x}^\top \mathbf{A} \mathbf{x}}{\mathbf{x}^\top \mathbf{x}}, \quad \lambda_{\min}(\mathbf{A}) = \inf_{\mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq \mathbf{0}} \frac{\mathbf{x}^\top \mathbf{A} \mathbf{x}}{\mathbf{x}^\top \mathbf{x}}.$$

(**Hint:** considering the orthogonal decomposition of **A**.)

- 2. (Optional) Suppose $\mathbf{B} = (b_{ij}) \in \mathbb{R}^{m \times n}$ with maximum singular value $\sigma_{\max}(\mathbf{B})$.
 - (a) Let $\|\mathbf{B}\|_2 := \sup_{\mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{B}\mathbf{x}\|_2}{\|\mathbf{x}\|_2}$. Please show that

$$\sigma_{\max}(\mathbf{B}) = \|\mathbf{B}\|_2.$$

(b) Please show that

$$\sigma_{\max}(\mathbf{B}) = \sup_{\mathbf{x} \in \mathbb{R}^m, \mathbf{y} \in \mathbb{R}^n, \mathbf{x}, \mathbf{y} \neq 0} \frac{\mathbf{x}^\top \mathbf{B} \mathbf{y}}{\|\mathbf{x}\|_2 \|\mathbf{y}\|_2}.$$

References

 $[1]\,$ T. Tao. Analysis II. Springer, 2015.