Introduction to Machine Learning

Fall 2024

University of Science and Technology of China

Notice, to get the full credits, please present your solutions step by step.

Exercise 1: Bolzano-Weierstrass Theorem

The Least Upper Bound Axiom

Any nonempty set of real numbers with an upper bound has a least upper bound. That is, sup *C always exists for a nonempty bounded above set* $C \subset \mathbb{R}$ *.*

Please show the following statements from **the least upper bound axiom**.

1. Let C be a nonempty subset of R that is bounded above. Prove that $u = \sup C$ if and only if *u* is an upper bound of *C* and

 $\forall \epsilon > 0, \exists a \in C$ such that $a > u - \epsilon$.

2. Suppose (x_n) be a sequence of real numbers such that $x_n \in [a, b]$, $\forall n$, please show that there exists $c \in [a, b]$ and a subsequence (x_{n_k}) of (x_n) such that $x_{n_k} \to c$ as $k \to \infty$.

Exercise 2: Limit and Limit Points

- 1. Show that $\{\mathbf{x}_n\}$ in \mathbb{R}^n converges to $\mathbf{x} \in \mathbb{R}^n$ if and only if $\{\mathbf{x}_n\}$ is bounded and has a unique limit point **x**.
- 2. (Limit Points of a Set). Let *C* be a subset of \mathbb{R}^n . A point $\mathbf{x} \in \mathbb{R}^n$ is called a limit point of *C* if there is a sequence $\{x_n\}$ in *C* such that $x_n \to x$ and $x_n \neq x$ for all positive integers *n*. If $\mathbf{x} \in C$ and \mathbf{x} is not a limit point of *C*, then \mathbf{x} is called an isolated point of *C*. Let *C ′* be the set of limit points of the set *C*. Please show the following statements.
	- (a) If $C = (0, 1) \cup \{2\} \subset \mathbb{R}$, then $C' = [0, 1]$ and $x = 2$ is an isolated point of C .
	- (b) The set C' is closed.

Exercise 3: Norms

In this exercise, we will give some examples of norms and a useful theorem related to norms in **finite** dimensional vector space.

1. l_p **norm:** The l_p norm is defined by

$$
\|\mathbf{x}\|_{p} = \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{1/p}
$$

where $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$ and $p \geq 1$.

- (a) Please show that the l_p norm is a norm.
- (b) Please show that the following equality.

$$
\lim_{p\to\infty} \|\mathbf{x}\|_p = \|\mathbf{x}\|_{\infty} = \max_{1\leq i\leq n} |x_i|.
$$

The l_{∞} norm is defined as above.

- 2. **Operator norms:** Suppose that $A \in \mathbb{R}^{m \times n}$, which can be viewed as a linear transformation from \mathbb{R}^n to \mathbb{R}^m . Please show the following operator norms' equality.
	- (a) Let $||\mathbf{A}||_1 = \sup_{\mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq \mathbf{0}} \frac{||\mathbf{A}\mathbf{x}||_1}{||\mathbf{x}||_1}$ $\frac{A\mathbf{x}\|_1}{\|\mathbf{x}\|_1}$. Please show that

$$
\|\mathbf{A}\|_1 = \max_{1 \le j \le n} \sum_{i=1}^m |a_{ij}|.
$$

 (b) Let $||\mathbf{A}||_{\infty} = \sup_{\mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq \mathbf{0}} \frac{||\mathbf{A}\mathbf{x}||_{\infty}}{||\mathbf{x}||_{\infty}}$ *∥***x***∥[∞]* . Please show that

$$
\|\mathbf{A}\|_{\infty} = \max_{1 \leq i \leq m} \sum_{j=1}^{n} |a_{ij}|.
$$

3. **(Optional) Dual norm:** Let *∥ · ∥* be a norm on R *n* . The dual norm of *∥ · ∥* is defined by

$$
\|\mathbf{x}\|_{*} = \sup_{\mathbf{y} \in \mathbb{R}^{n}, \|\mathbf{y}\| \leq 1} \mathbf{y}^{\top} \mathbf{x}.
$$

(a) Please show that the dual of the Euclidean norm is the Euclidean norm itself. i.e.,

$$
\sup_{\mathbf{y}\in\mathbb{R}^n,\|\mathbf{y}\|_2\leq 1}\mathbf{y}^\top\mathbf{x}=\|\mathbf{x}\|_2.
$$

(b) Please show that the dual of the l_1 norm is the l_∞ norm. i.e.,

$$
\sup_{\mathbf{y}\in\mathbb{R}^n, \|\mathbf{y}\|_1\leq 1} \mathbf{y}^\top \mathbf{x} = \|\mathbf{x}\|_\infty.
$$

4. **(Optional) Equivalence of norms:**

(a) Let $\|\cdot\|_a$ and $\|\cdot\|_b$ be two norms on \mathbb{R}^n . We say that $\|\cdot\|_a$ and $\|\cdot\|_b$ are equivalent if there exist two positive constants c_1 and c_2 such that

 c_1 *∥***x***∥a* \leq *∥***x** $|$ *b* \leq *c*₂*∥***x** $|$ *a,* \forall **x** $\in \mathbb{R}^n$ *.*

Please show that all norms on \mathbb{R}^n are equivalent.

- (b) Suppose $\mathbf{X}_1 = (\mathbb{R}^n, \|\cdot\|_a)$ and $\mathbf{X}_2 = (\mathbb{R}^n, \|\cdot\|_b)$ are two normed vector spaces. Please show that if (\mathbf{x}_n) converges to **x** in \mathbf{X}_1 , then (\mathbf{x}_n) also converges to **x** in **X2**, and vice versa.
- (c) The unit ball in **X¹** and **X²** may be different. However, the open set in normed vector space X_1 is also open in normed vector space X_2 , and vice versa. Please show that by the theorem of equivalence of norms.
- (d) Now we can prove that if f is continuous in normed vector space X_1 , then f is also continuous in normed vector space **X2**, and vice versa. Please show that by the conclusion in (c).

Exercise 4: Open and Closed Sets

The norm ball ${\bf \{y \in \mathbb{R}^n : \|y - x\|_2 < r, x \in \mathbb{R}^n\}}$ is denoted by $B_r({\bf x})$.

- 1. Given a set $C \subset \mathbb{R}^n$, please show the following are equivalent.
	- (a) The set *C* is closed; that is **cl** $C = C$.
	- (b) The complement of *C* is open.
	- (c) If $B_{\epsilon}(\mathbf{x}) \cap C \neq \emptyset$ for every $\epsilon > 0$, then $\mathbf{x} \in C$.
- 2. Given $A \subset \mathbb{R}^n$, a set $C \subset A$ is called open in *A* if

 $C = \{ \mathbf{x} \in C : B_{\epsilon}(\mathbf{x}) \cap A \subset C \text{ for some } \epsilon > 0 \}.$

A set *C* is said to be closed in *A* if $A \setminus C$ is open in *A*.

- (a) Let $B = [0, 1] \cup \{2\}$. Please show that $[0, 1]$ is not an open set in R, while it is both open and closed in *B*.
- (b) Please show that a set $C \subset A$ is open in *A* if and only if $C = A \cap U$, where *U* is open in \mathbb{R}^n .

Exercise 5: Extreme Value Theorem and Fixed Point

- 1. Show that any continuous mapping from the closed interval [0,1] to itself has a fixed point, i.e. $\forall f : [0, 1] \to [0, 1], \exists x \in [0, 1],$ such that $f(x) = x$.
- 2. Show that a continuous mapping from the open interval (0*,* 1) to itself may have no fixed point, i.e. $\exists f : (0,1) \rightarrow (0,1)$, such that for all $x \in (0,1)$, $f(x) \neq x$.
- 3. If a continuous mapping $f : [0,1] \rightarrow [0,1]$ satisfies $f(0) = 0$, $f(1) = 1$, and for some *n ∈* N,

$$
f^{(n)}(x) := (f \circ f \circ \dots \circ f)(x) \equiv x
$$

for all $x \in [0, 1]$, show that for all $x \in [0, 1]$,

$$
f(x) \equiv x.
$$

(**Hint:** consider the monotonicity of *f*.)

- 4. Show that if a non-decreasing function $f : [0,1] \to \mathbb{R}_+$ is continuous, then there exists a constant $\lambda > 0$, such that for any point $x \in [0, 1]$, at least one of the following two cases of the function λf can be realized:
	- (a) x is a fixed point of λf .
	- (b) $(\lambda f)^{(n)}(x)$ tends to a fixed point of λf , i.e. $\lim_{n\to\infty} (\lambda f)((\lambda f)^{(n)}(x)) = \lim_{n\to\infty} (\lambda f)^{(n)}(x)$,

where $(\lambda f)(x) = \lambda * (f(x)).$

(**Hint:** first consider using the extreme value theorem.)

Exercise 6: Linear Space

- 1. Let $P_n[x]$ be the set of all polynomials on R with degree at most *n*. Show that $P_n[x]$ is a linear space.
- 2. Let *V* be a linear space, $\lambda \in \mathbb{F}$ be an arbitrary number, $v \in V$ be an arbitrary vector. Show that:
	- (a) The zero vectors of *V* is unique.
	- (b) The additive inverse of *v* is unique, i.e. $\forall v \in V$, there exists only one $v' \in V$, such that $v + v' = 0$. Moreover, $v' = (-1) \cdot v = -v$.
	- (c) $\lambda \cdot \mathbf{0} = 0 \cdot v = \mathbf{0}, \forall \lambda \in \mathbb{F}, v \in V$.
	- (d) If $\lambda \cdot v = 0$, then $\lambda = 0$ or $v = 0$.
- 3. How many vectors can a linear space have? How many subspaces does a linear space have at least?

Exercise 7: Basis and Coordinates

Suppose that $\{a_1, a_2, \ldots, a_n\}$ is a basis of an *n*-dimensional vector space *V*.

- 1. Show that $\{\lambda_1 \mathbf{a}_1, \lambda_2 \mathbf{a}_2, \ldots, \lambda_n \mathbf{a}_n\}$ is also a basis of *V* for nonzero scalars $\lambda_1, \lambda_2, \ldots, \lambda_n$.
- 2. Let $V = \mathbb{R}^n$, $\mathbf{A} = (\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n) \in \mathbb{R}^{n \times n}$ and $\mathbf{B} = (\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n) \in \mathbb{R}^{n \times n}$. $(\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_n) = (\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n) \mathbf{P}$, where $\mathbf{P} \in \mathbb{R}^{n \times n}$ and $\mathbf{b}_i \in \mathbb{R}^n$, for any $i \in$ $\{1, \ldots, n\}$. Show that $\{\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_n\}$ is also a basis of *V* for any invertible matrix **P**.
- 3. Suppose that the coordinate of a vector **v** under the basis $\{a_1, a_2, \ldots, a_n\}$ is $\mathbf{x} =$ $(x_1, x_2, \ldots x_n).$
	- (a) What is the coordinate of **v** under $\{\lambda_1 \mathbf{a}_1, \lambda_2 \mathbf{a}_2, \dots, \lambda_n \mathbf{a}_n\}$?
	- (b) What are the coordinates of $\mathbf{w} = \mathbf{a}_1 + \cdots + \mathbf{a}_n$ under $\{\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n\}$ and $\{\lambda_1 \mathbf{a}_1, \lambda_2 \mathbf{a}_2, \ldots, \lambda_n \mathbf{a}_n\}$? Note that $\lambda_i \neq 0$ for any $i \in \{1, \ldots, n\}$.
- 4. Suppose $\mathbf{a} = (1,0), \mathbf{b} = (0,1)$ and $\mathbf{c} = (-1,0)$ are three unit vectors in twodimensional space. $\mathbf{v} = (x, y)$ is a vector in two-dimensional space.
	- (a) Please find the coordinate of **v** under basis *{***c***,* **b***}*? Is the coordinate unique?
	- (b) Please find all the possible combination coefficients of **v** under vectors **a**, **b** and **c**, i.e., $v = x'a + y'b + z'c$.
	- (c) (**Bonus**) Each set of combination coefficients (x', y', z') in (b) forms a vector in \mathbb{R}^3 . Please find the combination coefficients with minimum ℓ_1 -norm.

Exercise 8: Derivatives with matrices

Definition 1 (Differentiability). [1] Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be a function, $\mathbf{x}_0 \in \mathbb{R}^n$ be a point, and let $L: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. We say that f is *differentiable at* \mathbf{x}_0 *with derivative L* if we have

$$
\lim_{\mathbf{x}\to\mathbf{x}_0;\mathbf{x}\neq\mathbf{x}_0}\frac{\|f(\mathbf{x})-f(\mathbf{x}_0)-L(\mathbf{x}-\mathbf{x}_0)\|_2}{\|\mathbf{x}-\mathbf{x}_0\|_2}=0.
$$

We denote this derivative by $f'(\mathbf{x}_0)$.

- 1. Let $\mathbf{x}, \mathbf{a} \in \mathbb{R}^n$ and $\mathbf{y} \in \mathbb{R}^m$. Consider the functions as follows. Please show that they are differentiable and find $f'(\mathbf{x})$.
	- (a) $f(\mathbf{x}) = \mathbf{a}^\top \mathbf{x}$.
	- (b) $f(\mathbf{x}) = \mathbf{x}^\top \mathbf{x}$.
	- (c) $f(\mathbf{x}) = ||\mathbf{y} \mathbf{A}\mathbf{x}||_2^2$, where $\mathbf{A} \in \mathbb{R}^{m \times n}$.
- 2. Please follow Definition 1 and give the definition of the differentiability of the functions $f: \mathbb{R}^{n \times n} \to \mathbb{R}.$
- 3. Let $f(\mathbf{X}) = \text{tr}(\mathbf{A}^\top \mathbf{X})$, where $\mathbf{A}, \mathbf{X} \in \mathbb{R}^{n \times m}$, and $\text{tr}(\cdot)$ denotes the trace of a matrix. Please discuss the differentiability of f and find f' if it is differentiable.
- 4. (Optional)Let $f(\mathbf{X}) = \det(\mathbf{X})$, where $\det(\mathbf{X})$ is the determinant of $\mathbf{X} \in \mathbb{R}^{n \times n}$. Please discuss the differentiability of *f* rigorously according to your definition in the last part. If *f* is differentiable, please find $f'(\mathbf{X})$.
- 5. (Optional)Let S_{++}^n be the space of all positive definite $n \times n$ matrices. Prove the function $f: \mathbf{S}_{++}^n \to \mathbb{R}$ defined by $f(\mathbf{X}) = \text{tr } \mathbf{X}^{-1}$ is differentiable on \mathbf{S}_{++}^n . (Hint: Expand the expression $(X + tY)^{-1}$ as a power series.)

Exercise 9: Rank of Matrices

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{n \times p}$.

1. Please show that

- f (a) $\text{rank}(A) = \text{rank}(A^{\top}) = \text{rank}(A^{\top}A) = \text{rank}(AA^{\top});$
- (b) $\text{rank}(AB) \leq \text{rank}(A)$; (please give an example when the equality holds)
- 2. The *column space* of **A** is defined by

$$
\mathcal{C}(\mathbf{A}) = \{ \mathbf{y} \in \mathbb{R}^m : \mathbf{y} = \mathbf{A}\mathbf{x}, \, \mathbf{x} \in \mathbb{R}^n \}.
$$

The *null space* of **A** is defined by

$$
\mathcal{N}(\mathbf{A}) = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} = 0\}.
$$

Notice that, the rank of **A** is the dimension of the column space of **A**. Please show that

- (a) $\text{rank}(\mathbf{A}) = \dim(\mathcal{C}(\mathbf{A});$
- (b) $\text{rank}(\mathbf{A}) + \dim(\mathcal{N}(\mathbf{A})) = n.$
- 3. Given that

$$
rank(AB) = rank(B) - dim(\mathcal{C}(B) \cap \mathcal{N}(A)).
$$
\n(1)

Please show the results in 1.(b) by Eq. (1).

Exercise 10: Properties of Eigenvalues and Singular Values

1. Suppose the maximum eigenvalue, minimum eigenvalue and maximum singular value of a given symmetric matrix $\mathbf{A} \in S^n$ are denoted by $\lambda_{\max}(\mathbf{A})$ and $\lambda_{\min}(\mathbf{A})$, respectively. Please show that

$$
\lambda_{\max}(\mathbf{A}) = \sup_{\mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq \mathbf{0}} \frac{\mathbf{x}^\top \mathbf{A} \mathbf{x}}{\mathbf{x}^\top \mathbf{x}}, \quad \lambda_{\min}(\mathbf{A}) = \inf_{\mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq \mathbf{0}} \frac{\mathbf{x}^\top \mathbf{A} \mathbf{x}}{\mathbf{x}^\top \mathbf{x}}.
$$

(**Hint:** considering the orthogonal decomposition of **A**.)

- 2. (Optional) Suppose $\mathbf{B} = (b_{ij}) \in \mathbb{R}^{m \times n}$ with maximum singular value $\sigma_{\max}(\mathbf{B})$.
	- (a) Let $\|\mathbf{B}\|_2 := \sup_{\mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{B}\mathbf{x}\|_2}{\|\mathbf{x}\|_2}$ $\frac{\mathbf{B}\mathbf{x}}{\|\mathbf{x}\|_2}$. Please show that

$$
\sigma_{\max}(\mathbf{B}) = \|\mathbf{B}\|_2.
$$

(b) Please show that

$$
\sigma_{\max}(\mathbf{B}) = \sup_{\mathbf{x} \in \mathbb{R}^m, \mathbf{y} \in \mathbb{R}^n, \mathbf{x}, \mathbf{y} \neq 0} \frac{\mathbf{x}^\top \mathbf{B} \mathbf{y}}{\|\mathbf{x}\|_2 \|\mathbf{y}\|_2}.
$$

References

[1] T. Tao. *Analysis II*. Springer, 2015.