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Stochastic Environment
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State Transition

After the agent picks and performs a certain action, there are four 

possibilities for the next state: the destination state, the current 

state, the states to the right and left of the current state. If the 

states are reachable, the corresponding probabilities are 0.8, 0.1, 
0.05, and 0.05, respectively; otherwise, the agent stays where it is.

State transition probabilities:
0.8

0.050.05
0.1



State Transition
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Reward

After the agent picks and performs a certain action at its current 

state, it receives rewards of 100, -100, and 0, if it arrives at states 
(3,2), (2,2), and all the other states, respectively.

Reward:

0.8

0.050.05
0.1
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Reward
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Markov Decision Process (MDP)

• Indeed, we have already introduced the so-called MDP, which is defined (rigorously) by 

 a set of states , possibly infinite 

 a set of actions    , possibly infinite

 an initial state             

 a transition probability                  : distribution over destination states

 a reward probability                : distribution over rewards   

• This model is Markovian because the transition and reward probabilities only depend on the 

current state and the action picked and performed at the current state, instead of the 

previous sequence of states and actions performed.

• In this lecture, we assume that 

 the states and the actions are finite

MRT Chapter 14

https://cs.nyu.edu/~mohri/mlbook/


• Starting from an arbitrary state    , the expected cumulative reward by following    is

Value Function

• Suppose that a policy    is given. 

random variable 



Value Function
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Value Function

• Tower property

• A simpler version

• Example: how to find the average height of the men in China?

𝐄 height = 𝐄 𝐄 height|province = 

province

𝐏 province 𝐄 height|province



Value Function – Bellman Equation

• Starting from an arbitrary state    , the expected cumulative reward by following    is

• Bellman Equation

random variable 



Value Function – Bellman Equation

• Bellman Equation
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Value Function – Bellman Equation

• Bellman Equation
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Value Function – Bellman Equation

• Bellman Equation
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Theorem: For a finite MDP, Bellman’s equation 

admits a unique solution that is given by

• The vector     and matrix     depend on the policy 



The Learning Task Revisited

• The learning task for RL scenarios is to learn an optimal policy in the sense that
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• For      and     , we have  

• Indeed,      is the optimal policy.



The Q Function

• Learning the optimal policy is challenging

• An alternative approach to find the optimal policy indirectly is by computing the 

state-action value function (Q function)

• The definition of the optimal policy implies that 

• Notice that

• All together, we have 

𝑄 𝑠, 𝑎 is the expected accumulated reward by performing 

the action 𝑎 first and then following the optimal policy

Bellman Equations



Quiz

• The learning task for RL scenarios is to learn an optimal policy in the sense that
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What are the best actions at states (3,0) 

and (2,1), i.e., 𝜋∗ 3,0 and 𝜋∗ 2,1 ?



Planning Algorithms



Planning

• Planning: we assume that the agent has perfect knowledge of the environment; thus, 

to find the optimal policy, there is no need for the agent to actually perform actions and 

interact with the environment
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Value Iteration

• Value iteration aims to find the optimal value function and thus the optimal policy



Value Iteration

• Value iteration aims to find the optimal value function and thus the optimal policy

0 1 2 3

0

1

2

Example



Value Iteration

• Value iteration aims to find the optimal value function and thus the optimal policy
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Value Iteration

• Value iteration aims to find the optimal value function and thus the optimal policy
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Value Iteration

• Value iteration aims to find the optimal value function and thus the optimal policy
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Value Iteration

• Value iteration aims to find the optimal value function and thus the optimal policy

Theorem: For any initial value   , the sequence generated by the value 

iteration algorithm converges to      .

• The key to the proof is the contraction mapping theorem 



Policy Iteration

• Policy iteration improves the policy directly



Policy Iteration

• Policy iteration improves the policy directly
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Policy Iteration

• Policy iteration improves the policy directly
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11 states in total



Policy Iteration

• Policy iteration improves the policy directly
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Policy Iteration

• Policy iteration improves the policy directly
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Policy Iteration

• Policy iteration improves the policy directly

65.22 77.22 87.94 0

18.22 -87.31 0
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Policy Iteration

• Policy iteration improves the policy directly

1𝑠𝑡 iteration: update the policy

65.22 77.22 87.94 0
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Policy Iteration

• Policy iteration improves the policy directly

1𝑠𝑡 iteration: update the policy

65.22 77.22 87.94 0

18.22 -87.31 0

11.70 -66.53 -75.78 -68.85
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Policy Iteration

three 

iterations 

to 

converge



Policy Iteration

Is this an always winning policy?

The optimal policy



Policy Iteration

• What if the reward for getting into (3,1) is -1000?
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The optimal policy

This is an always winning policy (why?). 



Policy Iteration

A mostly winning policy A never lose policy

• For the same task, different reward strategies lead to different optimal policy

• According to your preference, you need to carefully design your reward strategy



Learning Algorithms



Learning

• Learning: as the environment model, i.e., the transition and reward, is unknown, the 

agent may need to learn them based on the training information. 
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Learning

• Learning: as the environment model, i.e., the transition and reward probabilities, is 

unknown, the agent may need to learn them based on the training information.

• Model-free approach: the agent learns the optimal policy directly, e.g., Q-learning

• Model-based approach: the agent first learns the environment model and then the 

optimal policy
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0 0 0 0 100
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Examples of training data



Nondeterministic Rewards and Actions

?

??
?

: state transition
: reward

Unknown

How to find the optimal policy without the state transition and reward probabilities?



The Q-learning Algorithm

• Initialize the matrix     to zero

• Observe the current state

• Do forever:

• Pick and perform an action

• Receive immediate reward

• Observe the new state

• Update

•

A sufficient condition for             to converge is to visit each state-action pair infinitely often

Recall the Q-learning algorithm for the deterministic environment

What if 𝑟 and 𝑠′ become random variables?



The Q-learning Algorithm

• For the stochastic environment, we replace the random variables with their 

expectations in the definition of Q values.

expectations

Q: How to find the expectation of a random variable 𝑋?

A: Keep sampling and recording its running average

the running average 

on n+1 samples
the running average 

on n samples

the estimation of 

the expectation of 𝑋



The Q-learning Algorithm

the number of visits of 𝑠, 𝑎

There are other ways to select       to guarantee that     converges to 

its optimal value. Mitchell 1997, Chapter 13  

Alpaydin 2014, Chapter 18

http://www.cs.cmu.edu/afs/cs.cmu.edu/user/mitchell/ftp/mlbook.html
https://mitpress.mit.edu/books/introduction-machine-learning-third-edition


The Q-learning Algorithm
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could NOT be fixed (why?)



The Q-learning Algorithm

𝜖 = 0.3

0 1 2 3

0

1

2

(0,0) (0,1) (0,2) (1,2) (2,3) (3,2)
up up right right right

0 0 0 0 100

• an example episode

• the initial state in each episode 

could NOT be fixed (why?)
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The Q-learning Algorithm
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Questions


