Last Update: December 12, 2023

## 1 Preliminary

### 1.1 Singular Value Decomposition

Definition 1. A set of vectors $\left\{\mathbf{v}_{i}\right\}_{i=1}^{n}$ in $\mathbf{R}^{d}$ are called orthonormal if

$$
\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle=\left\{\begin{array}{l}
1, \text { if } i=j, \\
0, \text { otherwise } .
\end{array}\right.
$$

A matrix $M \in \mathbb{R}^{d \times d}$ is orthogonal if

$$
M^{\top} M=I,
$$

where $I \in \mathbb{R}^{d \times d}$ is the identity matrix.
Theorem 1. Given a matrix $A \in \mathbb{R}^{m \times n}$. Suppose that $\operatorname{rank}(A)=r$. Then, there exists $n$ right singular vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ that are orthonormal in $\mathbb{R}^{n}$, and $m$ left singular vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}$ that are orthonormal in $\mathbb{R}^{m}$, such that

$$
\begin{align*}
& A \mathbf{v}_{i}=\sigma_{i} \mathbf{u}_{i}, i=1, \ldots, r  \tag{1}\\
& A \mathbf{v}_{i}=0, i=r+1, \ldots, n, \tag{2}
\end{align*}
$$

where $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{r}>0$ are the $r$ positive singular values.

## Remark 1.

1. The last $n-r$ right singular vectors $\mathbf{v}_{i}, i=r+1, \ldots, n$, span the null space of $A$. The last $m-r$ left singular vectors $\mathbf{u}_{i}, i=r+1, \ldots, m$, span the null space of $A^{\top}$.
2. Let $V=\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}, \ldots, \mathbf{v}_{n}\right), U=\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}, \ldots, \mathbf{u}_{m}\right)$, and

$$
\Sigma=\left(\begin{array}{ccccccc}
\sigma_{1} & 0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & \sigma_{2} & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & & \vdots \\
0 & 0 & \cdots & \sigma_{r} & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & 0 & \cdots & 0 .
\end{array}\right) .
$$

We can write Eq. (1) as

$$
A V=U \Sigma .
$$

3. The singular value decomposition of $A$ is

$$
A=U \Sigma V^{\top} .
$$

4. Recall that, if $A=B C D^{\top}$, where $B \in \mathbb{R}^{m \times p}, C \in \mathbb{R}^{p \times q}$, and $D \in \mathbb{R}^{n \times q}$, then we can write $A$ as the sum of a set of rank 1 matrix

$$
A=\sum_{i=1}^{p} \sum_{j=1}^{q} c_{i, j} \mathbf{b}_{i} \mathbf{d}_{j}^{\top},
$$

where $\mathbf{b}_{i}$ and $\mathbf{d}_{j}$ are the $i^{\text {th }}$ and $j^{\text {th }}$ column vectors of $B$ and $D$, respectively.
Therefore, by the singular value decomposition, we can write $A$ as a sum of $r$ rank 1 matrix:

$$
A=U \Sigma V^{\top}=\sigma_{1} \mathbf{u}_{1} \mathbf{v}_{1}^{\top}+\sigma_{2} \mathbf{u}_{2} \mathbf{v}_{2}^{\top}+\ldots+\sigma_{r} \mathbf{u}_{r} \mathbf{v}_{r}^{\top}
$$

5. Let $V_{r}=\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}\right), U_{r}=\left(\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{r}\right)$, and

$$
\Sigma_{r}=\left(\begin{array}{cccc}
\sigma_{1} & 0 & \cdots & 0 \\
0 & \sigma_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \sigma_{r}
\end{array}\right)
$$

The reduced form of the SVD of $A$ is

$$
A=U_{r} \Sigma_{r} V_{r}^{\top}
$$

### 1.2 Random Vectors

A random vector $X$ takes the form of

$$
X=\left(\begin{array}{c}
X_{1} \\
\vdots \\
X_{d}
\end{array}\right)
$$

The mean of $X$ is

$$
\mu=\left(\begin{array}{c}
\mu_{1}  \tag{3}\\
\vdots \\
\mu_{d}
\end{array}\right)=\left(\begin{array}{c}
\mathbb{E}\left(X_{1}\right) \\
\vdots \\
\mathbb{E}\left(X_{d}\right)
\end{array}\right) .
$$

The covariance matrix $\Sigma$, also written as $\mathbb{V}(X)$, is

$$
\Sigma=\left(\begin{array}{cccc}
\mathbb{V}\left(X_{1}\right) & \operatorname{Cov}\left(X_{1}, X_{2}\right) & \cdots & \operatorname{Cov}\left(X_{1}, X_{d}\right) \\
\operatorname{Cov}\left(X_{2}, X_{1}\right) & \mathbb{V}\left(X_{2}\right) & \cdots & \operatorname{Cov}\left(X_{2}, X_{d}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\operatorname{Cov}\left(X_{d}, X_{1}\right) & \operatorname{Cov}\left(X_{d}, X_{2}\right) & \cdots & \mathbb{V}\left(X_{d}\right)
\end{array}\right) .
$$

Suppose that we randomly sample $n$ data instances:

$$
\mathbf{x}_{i}=\left(\begin{array}{c}
x_{i, 1}  \tag{4}\\
\vdots \\
x_{i, d}
\end{array}\right), i=1, \ldots, n
$$

The sample mean is

$$
\overline{\mathbf{x}}=\left(\begin{array}{c}
\bar{x}_{1} \\
\vdots \\
\bar{x}_{d}
\end{array}\right)=\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} .
$$

Clearly,

$$
\bar{x}_{j}=\frac{1}{n} \sum_{i=1}^{n} x_{i, j}, j=1, \ldots, d .
$$

The sample variance matrix $S \in \mathbb{R}^{d \times d}$ is

$$
S=\left(\begin{array}{cccc}
s_{1,1} & s_{1,2} & \cdots & s_{1, d} \\
s_{2,1} & s_{2,2} & \cdots & s_{2, d} \\
\vdots & \vdots & \ddots & \vdots \\
s_{d, 1} & s_{d, 2} & \cdots & s_{d, d}
\end{array}\right)
$$

where

$$
s_{j, k}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i, j}-\bar{x}_{j}\right)\left(x_{i, k}-\bar{x}_{k}\right) .
$$

By simple algebraic manipulation, we can see that

$$
\begin{equation*}
S=\frac{1}{n-1} \sum_{i=1}^{n}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)^{\top}=\frac{1}{n-1} \widetilde{X} \widetilde{X}^{\top} \tag{5}
\end{equation*}
$$

where $\widetilde{X} \in \mathbb{R}^{d \times n}$ and its $i^{\text {th }}$ column is $\mathbf{x}_{i}-\overline{\mathbf{x}}$.

## 2 Principal Component Analysis

The core idea of PCA is that, we would like to project the data instances into a subspace such that the set of projected data instances preserves as much information as possible.

### 2.1 The formulation

Suppose that we have a set of data instances $\mathbf{x}_{i} \in \mathbb{R}^{d}, i=1, \ldots, n$. Let $\mathbf{g}_{k} \in \mathbb{R}^{d}, k=1, \ldots, K$, with $K \leq d$, be a set of vectors such that

$$
\left\langle\mathbf{g}_{i}, \mathbf{g}_{j}\right\rangle= \begin{cases}1, & i \neq j \\ 0, & \text { otherwise }\end{cases}
$$

and

$$
G=\left(\mathbf{g}_{1}, \ldots, \mathbf{g}_{K}\right)
$$

Then, the projection of the $\mathbf{x}_{i}$ into the subspace spanned by $\left\{\mathbf{g}_{1}, \ldots, \mathbf{g}_{K}\right\}$, that is, the column space of $G$, is

$$
\begin{equation*}
\mathbf{z}_{i}=P_{G}\left(\mathbf{x}_{i}\right)=G G^{\top} \mathbf{x}_{i} \tag{6}
\end{equation*}
$$

We use the sample variance to measure the information carried by the data instances. Thus, the information preserved by the projected data instances is

$$
\frac{1}{n-1} \sum_{i=1}^{n}\left\|\mathbf{z}_{i}-\overline{\mathbf{z}}\right\|^{2},
$$

where

$$
\begin{equation*}
\overline{\mathbf{z}}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{z}_{i} . \tag{7}
\end{equation*}
$$

By plugging Eq. (6) into Eq. (7), we have

$$
\overline{\mathbf{z}}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{z}_{i}=\frac{1}{n} \sum_{i=1}^{n} G G^{\top} \mathbf{x}_{i}=G G^{\top}\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}\right)=G G^{\top} \overline{\mathbf{x}}
$$

where

$$
\overline{\mathbf{x}}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} .
$$

Thus, the problem becomes

$$
\begin{align*}
& \max _{G \in \mathbb{R}^{d \times K} K} \frac{1}{n-1} \sum_{i=1}^{n}\left\|G G^{\top} \mathbf{x}_{i}-G G^{\top} \overline{\mathbf{x}}\right\|^{2},  \tag{8}\\
& \quad \text { s.t. } G^{\top} G=I .
\end{align*}
$$

Notice that

$$
\begin{aligned}
\frac{1}{n-1} \sum_{i=1}^{n}\left\|G G^{\top} \mathbf{x}_{i}-G G^{\top} \overline{\mathbf{x}}\right\|^{2} & =\frac{1}{n-1} \sum_{i=1}^{n}\left\langle G G^{\top}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right), G G^{\top}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)\right\rangle \\
& =\frac{1}{n-1} \sum_{i=1}^{n}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)^{\top} G G^{\top} G G^{\top}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right) \\
& =\frac{1}{n-1} \sum_{i=1}^{n}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)^{\top} G G^{\top}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right) \\
& =\frac{1}{n-1} \sum_{i=1}^{n} \operatorname{tr}\left(\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)^{\top} G G^{\top}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)\right) \\
& =\frac{1}{n-1} \sum_{i=1}^{n} \operatorname{tr}\left(G^{\top}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)^{\top} G\right) \\
& =\operatorname{tr}\left(G^{\top}\left(\frac{1}{n-1} \sum_{i=1}^{n}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)^{\top}\right) G\right) \\
& =\operatorname{tr}\left(G^{\top} S G\right) .
\end{aligned}
$$

Thus, the problem in (8) becomes

$$
\begin{gather*}
\max _{G \in \mathbb{R}^{d \times K}} \operatorname{tr}\left(G^{\top} S G\right),  \tag{9}\\
\text { s.t. } G^{\top} G=I .
\end{gather*}
$$

Question 1. Consider the problem in (9).

1. Does the problem always admit a solution?
2. If the problem admit a solution, is it unique?

### 2.2 Solution to problem (9)

Recall from Eq. (5) that

$$
S=\frac{1}{n-1} \tilde{X} \tilde{X}^{\top} .
$$

We denote the SVD of $\widetilde{X}$ by

$$
\tilde{X}=U \Sigma V^{\top},
$$

where $U \in \mathbb{R}^{d \times d}, \Sigma \in \mathbb{R}^{d \times n}$, and $V \in \mathbb{R}^{n \times n}$. Thus,

$$
\begin{equation*}
S=\frac{1}{n-1} U \Sigma_{d}^{2} U^{\top}, \tag{10}
\end{equation*}
$$

where $\Sigma_{d}^{2}=\Sigma \Sigma^{\top}$. Plugging Eq. (10) into the problem in (9) leads to

$$
\begin{gather*}
\max _{G \in \mathbb{R}^{d \times K}} \operatorname{tr}\left(G^{\top} U \Sigma_{d}^{2} U^{\top} G\right),  \tag{11}\\
\text { s.t. } G^{\top} G=I .
\end{gather*}
$$

Denote

$$
\begin{equation*}
Q=U^{\top} G \tag{12}
\end{equation*}
$$

We can see that

$$
Q^{\top} Q=I
$$

Thus, the problem in (11) reduces to

$$
\begin{gather*}
\max _{Q \in \mathbb{R}^{d \times K}} \operatorname{tr}\left(Q^{\top} \Sigma_{d}^{2} Q\right),  \tag{13}\\
\text { s.t. } Q^{\top} Q=I .
\end{gather*}
$$

We can see that

$$
\operatorname{tr}\left(Q^{\top} \Sigma^{2} Q\right)=\sum_{k=1}^{K} \sum_{i=1}^{d} \sigma_{i}^{2} q_{i, k}^{2}=\sum_{i=1}^{d} \sigma_{i}^{2}\left(\sum_{k=1}^{K} q_{i, k}^{2}\right)
$$

Notice that

$$
\begin{equation*}
\sum_{k=1}^{K} q_{i, k}^{2} \tag{14}
\end{equation*}
$$

is the square of the $\ell_{2}$ norm of the $i^{\text {th }}$ row of the matrix $Q$. Denote

$$
\begin{equation*}
\alpha_{i}=\sum_{k=1}^{K} q_{i, k}^{2} . \tag{15}
\end{equation*}
$$

We can see that

$$
\begin{aligned}
& \alpha_{i} \in[0,1], i=1, \ldots, d, \\
& \sum_{i=1}^{d} \alpha_{i}=\sum_{i=1}^{d} \sum_{k=1}^{K} q_{i, k}^{2}=\sum_{k=1}^{K} \sum_{i=1}^{d} q_{i, k}^{2}=\sum_{k=1}^{K} 1=K .
\end{aligned}
$$

Thus, we can further transform the problem (13) to

$$
\begin{gather*}
\max _{\alpha \in \mathbb{R}^{d}} \sum_{i=1}^{d} \alpha_{i} \sigma_{i}^{2}  \tag{16}\\
\text { s.t. } \alpha_{i} \in[0,1], i=1, \ldots, d, \\
\quad \sum_{i=1}^{d} \alpha_{i}=K
\end{gather*}
$$

We can solve the above problem by the Lagrange multiplier method. However, we provide an alternative approach. Let

$$
f(\alpha)=\sum_{i=1}^{d} \alpha_{i} \sigma_{i}^{2}
$$

Recall that we arrange the singular values in decending order, that is,

$$
\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{d} \geq 0
$$

As $\sum_{i=1}^{d} \alpha_{i}=K$, we have

$$
\sum_{i=K+1}^{d} \alpha_{i}=K-\sum_{i=1}^{K} \alpha_{i}
$$

Thus, for any $\alpha$ that is feasible with respect to problem (16)

$$
\begin{aligned}
f(\alpha) & =\sum_{i=1}^{K} \alpha_{i} \sigma_{i}^{2}+\sum_{i=K+1}^{d} \alpha_{i} \sigma_{i}^{2} \\
& \leq \sum_{i=1}^{K} \alpha_{i} \sigma_{i}^{2}+\left(\sum_{i=K+1}^{d} \alpha_{i}\right) \sigma_{K+1}^{2} \\
& =\sum_{i=1}^{K} \alpha_{i} \sigma_{i}^{2}+\left(K-\sum_{i=1}^{K} \alpha_{i}\right) \sigma_{K+1}^{2} \\
& =\sum_{i=1}^{K} \alpha_{i} \sigma_{i}^{2}+\left(\sum_{i=1}^{K}\left(1-\alpha_{i}\right)\right) \sigma_{K+1}^{2} \\
& \leq \sum_{i=1}^{K} \alpha_{i} \sigma_{i}^{2}+\sum_{i=1}^{K}\left(1-\alpha_{i}\right) \sigma_{i}^{2} \\
& =\sum_{i=1}^{K} \sigma_{i}^{2} \\
& =f\left(\alpha^{*}\right)
\end{aligned}
$$

where $\alpha^{*}=\left(\alpha_{1}^{*}, \ldots, \alpha_{d}^{*}\right)$ with

$$
\alpha_{i}^{*}=\left\{\begin{array}{l}
1, i=1, \ldots, K  \tag{17}\\
0, i=K+1, \ldots, d .
\end{array}\right.
$$

Moreover, it is easy to see that $\alpha^{*}$ is feasible. Thus, the vector $\alpha^{*}$ is the optimal solution to problem (16).

We denote the optimal solution to problem (13) by

$$
Q^{*}=\left(\mathbf{q}_{1}^{*}, \ldots, \mathbf{q}_{K}^{*}\right) .
$$

In view of Eq. (15) and Eq. (17), we can see that the last $d-K$ entries of $\mathbf{q}_{j}^{*}$ are 0 for all $j=1, \ldots, K$, that is

$$
Q^{*}=\binom{\widetilde{Q}^{*}}{\mathbf{0}}_{d \times K}
$$

where

$$
\widetilde{Q}^{*} \in \mathbb{R}^{K \times K} \text { and }\left(\widetilde{Q}^{*}\right)^{\top} \widetilde{Q}^{*}=I .
$$

Thus, by Eq. (12), we have

$$
\begin{equation*}
G^{*}=U Q^{*}=U_{K} \widetilde{Q}^{*}, \tag{18}
\end{equation*}
$$

where

$$
U_{K}=\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{K}\right)
$$

That is, the optimal solution $G^{*}$ to problem (9) is the matrix which shares the same column subspace spanned by the $K$ left singular vectors of $\widetilde{X}$ corresponding to its first $K$ largest singular values.

### 2.3 Principal components

Notice that, $\widetilde{Q}^{*}$ in Eq. (18) is an arbitrary $K \times K$ orthogonal matrix. Although $G^{*}$ is a solution to problem (9) for any orthogonal matrix $\widetilde{Q}^{*}$, the column vectors are not necessarily the so-called principal component vectors of the sampled data $\left\{\mathbf{x}_{i}\right\}_{i=1}^{n}$.

The column vectors of $G^{*}$ are the principal component vectors of the data $\left\{\mathbf{x}_{i}\right\}_{i=1}^{n}$ only if $\widetilde{Q}^{*}=I$, that is

$$
G^{*}=\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{K}\right)
$$

and $\left\{\mathbf{u}_{j}\right\}_{j=1}^{K}$ are the first $K$ Principal component vectors.
Remark 2. Commonly seen approach to derive the principal component vectors is to first set $K=1$ and solve the problem in (9). By the same approach in the last section, we can get the first principal component vector as $\mathbf{u}_{1}$. Then, we fix $\mathbf{u}_{1}$ and solve the problem in (9) by setting $K=2$. We can get the second Principal component vector $\mathbf{u}_{2}$. Repeating this procedure, we can get the first $K$ principal component vectors.

