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1 Preliminary

1.1 Singular Value Decomposition

Definition 1. A set of vectors {vi}ni=1 in Rd are called orthonormal if

⟨vi,vj⟩ =

{
1, if i = j,

0, otherwise.

A matrix M ∈ Rd×d is orthogonal if

M⊤M = I,

where I ∈ Rd×d is the identity matrix.

Theorem 1. Given a matrix A ∈ Rm×n. Suppose that rank(A) = r. Then, there exists n right
singular vectors v1, . . . ,vn that are orthonormal in Rn, and m left singular vectors u1, . . . ,um that
are orthonormal in Rm, such that

Avi =σiui, i = 1, . . . , r, (1)

Avi =0, i = r + 1, . . . , n, (2)

where σ1 ≥ σ2 ≥ . . . ≥ σr > 0 are the r positive singular values.

Remark 1.

1. The last n − r right singular vectors vi, i = r + 1, . . . , n, span the null space of A. The last
m− r left singular vectors ui, i = r + 1, . . . ,m, span the null space of A⊤.

2. Let V = (v1, . . . ,vr, . . . ,vn), U = (u1, . . . ,ur, . . . ,um), and

Σ =



σ1 0 · · · 0 0 . . . 0
0 σ2 · · · 0 0 . . . 0
...

...
. . .

...
...

...
0 0 · · · σr 0 · · · 0
0 0 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 0 0 · · · 0.


.

We can write Eq. (1) as

AV = UΣ.

3. The singular value decomposition of A is

A = UΣV ⊤.
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4. Recall that, if A = BCD⊤, where B ∈ Rm×p, C ∈ Rp×q, and D ∈ Rn×q, then we can write A
as the sum of a set of rank 1 matrix

A =

p∑
i=1

q∑
j=1

ci,jbid
⊤
j ,

where bi and dj are the ith and jth column vectors of B and D, respectively.

Therefore, by the singular value decomposition, we can write A as a sum of r rank 1 matrix:

A = UΣV ⊤ = σ1u1v
⊤
1 + σ2u2v

⊤
2 + . . .+ σrurv

⊤
r .

5. Let Vr = (v1,v2, . . . ,vr), Ur = (u1,u2, . . . ,ur), and

Σr =


σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σr

 .

The reduced form of the SVD of A is

A = UrΣrV
⊤
r .

1.2 Random Vectors

A random vector X takes the form of

X =

X1
...
Xd

 .

The mean of X is

µ =

µ1
...
µd

 =

E(X1)
...

E(Xd)

 . (3)

The covariance matrix Σ, also written as V(X), is

Σ =


V(X1) Cov(X1, X2) · · · Cov(X1, Xd)

Cov(X2, X1) V(X2) · · · Cov(X2, Xd)
...

...
. . .

...
Cov(Xd, X1) Cov(Xd, X2) · · · V(Xd)

 .

Suppose that we randomly sample n data instances:

xi =

xi,1
...

xi,d

 , i = 1, . . . , n. (4)
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The sample mean is

x̄ =

x̄1
...
x̄d

 =
1

n

n∑
i=1

xi.

Clearly,

x̄j =
1

n

n∑
i=1

xi,j , j = 1, . . . , d.

The sample variance matrix S ∈ Rd×d is

S =


s1,1 s1,2 · · · s1,d
s2,1 s2,2 · · · s2,d
...

...
. . .

...
sd,1 sd,2 · · · sd,d

 ,

where

sj,k =
1

n− 1

n∑
i=1

(xi,j − x̄j)(xi,k − x̄k).

By simple algebraic manipulation, we can see that

S =
1

n− 1

n∑
i=1

(xi − x̄)(xi − x̄)⊤ =
1

n− 1
X̃X̃⊤, (5)

where X̃ ∈ Rd×n and its ith column is xi − x̄.

2 Principal Component Analysis

The core idea of PCA is that, we would like to project the data instances into a subspace such
that the set of projected data instances preserves as much information as possible.

2.1 The formulation

Suppose that we have a set of data instances xi ∈ Rd, i = 1, . . . , n. Let gk ∈ Rd, k = 1, . . . ,K,
with K ≤ d, be a set of vectors such that

⟨gi,gj⟩ =

{
1, i ̸= j;

0, otherwise,

and

G = (g1, . . . ,gK).

Then, the projection of the xi into the subspace spanned by {g1, . . . ,gK}, that is, the column space
of G, is

zi = PG(xi) = GG⊤xi. (6)
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We use the sample variance to measure the information carried by the data instances. Thus, the
information preserved by the projected data instances is

1

n− 1

n∑
i=1

∥zi − z̄∥2,

where

z̄ =
1

n

n∑
i=1

zi. (7)

By plugging Eq. (6) into Eq. (7), we have

z̄ =
1

n

n∑
i=1

zi =
1

n

n∑
i=1

GG⊤xi = GG⊤

(
1

n

n∑
i=1

xi

)
= GG⊤x̄,

where

x̄ =
1

n

n∑
i=1

xi.

Thus, the problem becomes

max
G∈Rd×K

1

n− 1

n∑
i=1

∥GG⊤xi −GG⊤x̄∥2, (8)

s.t.G⊤G = I.

Notice that

1

n− 1

n∑
i=1

∥GG⊤xi −GG⊤x̄∥2 = 1

n− 1

n∑
i=1

⟨GG⊤(xi − x̄), GG⊤(xi − x̄)⟩

=
1

n− 1

n∑
i=1

(xi − x̄)⊤GG⊤GG⊤(xi − x̄)

=
1

n− 1

n∑
i=1

(xi − x̄)⊤GG⊤(xi − x̄)

=
1

n− 1

n∑
i=1

tr
(
(xi − x̄)⊤GG⊤(xi − x̄)

)
=

1

n− 1

n∑
i=1

tr
(
G⊤(xi − x̄)(xi − x̄)⊤G

)
=tr

(
G⊤

(
1

n− 1

n∑
i=1

(xi − x̄)(xi − x̄)⊤

)
G

)
=tr

(
G⊤SG

)
.

Thus, the problem in (8) becomes

max
G∈Rd×K

tr(G⊤SG), (9)

s.t.G⊤G = I.
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Question 1. Consider the problem in (9).

1. Does the problem always admit a solution?

2. If the problem admit a solution, is it unique?

2.2 Solution to problem (9)

Recall from Eq. (5) that

S =
1

n− 1
X̃X̃⊤.

We denote the SVD of X̃ by

X̃ = UΣV ⊤,

where U ∈ Rd×d, Σ ∈ Rd×n, and V ∈ Rn×n. Thus,

S =
1

n− 1
UΣ2

dU
⊤, (10)

where Σ2
d = ΣΣ⊤. Plugging Eq. (10) into the problem in (9) leads to

max
G∈Rd×K

tr(G⊤UΣ2
dU

⊤G), (11)

s.t.G⊤G = I.

Denote

Q = U⊤G. (12)

We can see that

Q⊤Q = I.

Thus, the problem in (11) reduces to

max
Q∈Rd×K

tr(Q⊤Σ2
dQ), (13)

s.t.Q⊤Q = I.

We can see that

tr(Q⊤Σ2Q) =
K∑
k=1

d∑
i=1

σ2
i q

2
i,k =

d∑
i=1

σ2
i

(
K∑
k=1

q2i,k

)
.

Notice that

K∑
k=1

q2i,k (14)
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is the square of the ℓ2 norm of the ith row of the matrix Q. Denote

αi =

K∑
k=1

q2i,k. (15)

We can see that

αi ∈ [0, 1], i = 1, . . . , d,

d∑
i=1

αi =

d∑
i=1

K∑
k=1

q2i,k =

K∑
k=1

d∑
i=1

q2i,k =

K∑
k=1

1 = K.

Thus, we can further transform the problem (13) to

max
α∈Rd

d∑
i=1

αiσ
2
i , (16)

s.t.αi ∈ [0, 1], i = 1, . . . , d,

d∑
i=1

αi = K.

We can solve the above problem by the Lagrange multiplier method. However, we provide an
alternative approach. Let

f(α) =
d∑

i=1

αiσ
2
i .

Recall that we arrange the singular values in decending order, that is,

σ1 ≥ σ2 ≥ . . . ≥ σd ≥ 0.

As
∑d

i=1 αi = K, we have

d∑
i=K+1

αi = K −
K∑
i=1

αi.
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Thus, for any α that is feasible with respect to problem (16)

f(α) =

K∑
i=1

αiσ
2
i +

d∑
i=K+1

αiσ
2
i

≤
K∑
i=1

αiσ
2
i +

(
d∑

i=K+1

αi

)
σ2
K+1

=

K∑
i=1

αiσ
2
i +

(
K −

K∑
i=1

αi

)
σ2
K+1

=
K∑
i=1

αiσ
2
i +

(
K∑
i=1

(1− αi)

)
σ2
K+1

≤
K∑
i=1

αiσ
2
i +

K∑
i=1

(1− αi)σ
2
i

=

K∑
i=1

σ2
i

=f(α∗),

where α∗ = (α∗
1, . . . , α

∗
d) with

α∗
i =

{
1, i = 1, . . . ,K,

0, i = K + 1, . . . , d.
(17)

Moreover, it is easy to see that α∗ is feasible. Thus, the vector α∗ is the optimal solution to problem
(16).

We denote the optimal solution to problem (13) by

Q∗ = (q∗
1, . . . ,q

∗
K).

In view of Eq. (15) and Eq. (17), we can see that the last d − K entries of q∗
j are 0 for all

j = 1, . . . ,K, that is

Q∗ =

(
Q̃∗

0

)
d×K

,

where

Q̃∗ ∈ RK×K and (Q̃∗)⊤Q̃∗ = I.

Thus, by Eq. (12), we have

G∗ = UQ∗ = UKQ̃∗, (18)

where

UK = (u1, . . . ,uK).

That is, the optimal solution G∗ to problem (9) is the matrix which shares the same column
subspace spanned by the K left singular vectors of X̃ corresponding to its first K largest singular
values.
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2.3 Principal components

Notice that, Q̃∗ in Eq. (18) is an arbitrary K ×K orthogonal matrix. Although G∗ is a solution
to problem (9) for any orthogonal matrix Q̃∗, the column vectors are not necessarily the so-called
principal component vectors of the sampled data {xi}ni=1.

The column vectors of G∗ are the principal component vectors of the data {xi}ni=1 only if Q̃∗ = I,
that is

G∗ = (u1, . . . ,uK),

and {uj}Kj=1 are the first K Principal component vectors.

Remark 2. Commonly seen approach to derive the principal component vectors is to first set
K = 1 and solve the problem in (9). By the same approach in the last section, we can get the first
principal component vector as u1. Then, we fix u1 and solve the problem in (9) by setting K = 2.
We can get the second Principal component vector u2. Repeating this procedure, we can get the
first K principal component vectors.
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