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1 The Primal Problem

Recall from the last lecture that, we are interested in the problems that take the form of

x e X.
We denote the feasible set of (1) by
Dy ={x:g(x) <0,h(x)=0,x€ X}. (2)

Each element in Dy is called a feasible solution. The optimal function value is

fr= inf f(x). 3)

x€Dg

Assumption 1. Feasibility and Boundedness The feasible set is nonempty and the objective
function is bounded from below, that is,

—oo < f* = inf .
oo < f x1611D0f(x)<oo

2 The Lagrangian Dual Problem

2.1 Weak duality

Recall from the last lecture that, for any A > 0, we have
a(A,p) < f*

This immediately leads to the result as follows.

Theorem 1. Weak Duality Theorem We define the dual optimal value by

q" = sup q(A,p). (4)
A>0,u
Then, we have
q < fr. (5)

The optimization problem in (4) is the so-called Lagrangian dual problem. As we have shown
that the dual function ¢ is concave, the Lagrangian dual problem is indeed equivalent to a convex
optimization problem (why?).

Theorem 1 implies that, the dual optimal value is a lower bound of the optimal function value
f*. The difference between f* and ¢* is the so-called duality gap.
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Definition 1. Duality gap is defined by
fF=a.

Remark 1. Duality gap is a commonly used termination condition for a set of optimization algo-
rithms.

In terms of the duality gap, we naturally have a few questions to ask.
Question 1. When is the duality gap zero, i.e., ¢* = f*7
Question 2. Suppose that the duality gap is zero, and there exists (\*, u*) with A* > 0 such that

¢ =q\",p*) = inf L(x,\*,pu*) = f*.
xeX
Then, if x minimizes L(x, \*, u*), that is,

x € argmin L(x, \*, u*), (6)
xeX

can we say that, X is one of the optimal solutions to the primal problem, i.e.,

X € argmin f(x)?
x€Dy

All of the subsequent discussions are trying to answer the above questions.

Remark 2. The major motivation for introducing the Lagrangian is to transforming a constrained
optimization problem with the feasible set Dy to an (almost) unconstrained optimization prob-
lem with feasible set X, while the optimal function value remains the same.

2.2 The Geometric Multipliers

S =A{(g(x), f(2)) - x € X}

//(‘)‘*’ 1)
¢ =q(\") = nf L(z,\*) = f(z) + \"g(x)

Figure 1: Hlustration of the geometric multipliers.

In view of Figure 1, the equality ¢* = f* holds implies that, we can find a hyperplane with the
normal vector (A*,1) that supports the set S from below intercepts the vertical axis at the level
f*. In this case, we can see that the duality gap is zero. This motivates the concept geometric
multipliers as follows.
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Definition 2. A vector (\*,u*) = (A],..., A5, i1, -, p1p) is said to be a geometric multiplier
vector (or simply geometric multiplier) for the primal problem if

Ar>0,i=1,...,m,
and

f* = inf L(x A ). (7)

xeX

Remark 3. Notice that, Eq. (7) is a requirement of the geometric multiplier instead of a definition
of f*. Recall that,

ff= inf f(x).

x€Dg
Remark 4. The RHS of Eq. (7) is indeed g(\*, p*). Therefore, the existence of a geometric
multiplier (A*, ©*) implies that we can find a feasible solution (A*, u*) of the dual problem such
that f* = q(\*, u*).
The existence of geometric multipliers indeed implies that there is no duality gap. We formalize
this result by the proposition as follows.

Proposition 1. Suppose that (\*, u*) is a geometric multiplier vector of the primal problem. Then,
we have the following hold.

1. ¢* = q(A\*,u1*), that is, (\*,u*) is one of the dual optimal solutions to the Lagrangian dual
problem (4);

2. the duality gap is zero, i.e., f* = q*.
Proof. Recall that, the Lagrangian dual function is defined by

q(A,p) = inf L(x, A, p).
xeX

Thus, the right hand side of Eq. (7) is indeed ¢(A*, u*), and we can write the condition in Eq. (7)
as

F* = inf LA, ) = g\, ). (8)
xeX

By further noting the weak duality property in (5) and the condition A > 0 in Definition 2, we can
conclude that

q* = Q()‘*alu'*)a (9)

that is, the geometric multiplier (A*, ©*) is one of the dual optimal solutions to the Lagrangian dual
problem (4). Moreover, combining (8) and (9) immediately leads to f* = ¢*, which completes the
proof. O

Remark 5. If we can find a geometric multiplier, then there is no duality gap. However, the
converse is not true. That is, if there is no duality gap, we may not be able to find a geometric
multiplier. They may not even exist at all.

Example 1. Consider an optimization problem as follows.
min f(z) =x
s.t. g(z) =2 <0,
re X =R.
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2.3 The Complementary Slackness

If a geometric multiplier (A\*, *) is known, we hope that x that minimizes the Lagrangian L(x, A*, u*)
over x € X is one of the optimal solutions to the primal problem as well. However, the vector
x € argmin,y L(x, \*, 1*) may not even be in the feasible set Dy.

Example 2. Consider an optimization problem as follows.

e’,  x<0,
min f(z) =<1 -z, z € [0,1],
0, x> 1.

sit. g(x) =2 <0.
We can see that, the geometric multiplier A* is 0, and the corresponding Lagrangian is
L(z,\*) = f(z).
Thus,

argmin L(z,\*) ={z:z > 1}.
z€R

Clearly, none of the points that minimizes L(z, \*) is feasible regarding the primal problem.

What if x € argmin, y L(x,\*, u*) is a feasible solution to the primal problem? Can we
conclude that such a X is an optimal solution to the primal problem? The answer is still no.

Example 3. Consider an optimization problem as follows.

We can see that, the geometric multiplier A\* is 1, and the corresponding Lagrangian is

0, z<0,
z, x > 0.

Lz, \") = f(x) + g(x) = {

Thus,

argmin L(z, \*) = {z : 2 < 0}.
z€R

However, it is easy to see that only x* = 0 is the optimal solution to the problem.

Remark 6. Notice that, Example 3 also provides us an example that the geometric multiplier may
not be unique. Indeed, for Example 3, the geometric multiplier is A* € [0, 1].

Thus, we need extra conditions to find the desirable optimal solutions from the set in (6), which
is the so-called complementary slackness.
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Proposition 2. Let (A\*, u*) be a geometric multiplier. Then, X* is a global minimum of the primal
problem if and only if

x* is feasible, (10)
x* € argmin L(x, \*, u*), (11)
xeX
Ngi(x*)=0,i=1,...,m. (12)
Proof.
1. (=) Suppose that x* is a global minimum of the primal problem. Then, x* must be feasible,
and thus
m p
FOE) 2 F0) + 30 g0 + D mih() = L X ) > ink L, X, 47) =
i=1 i=1

The definition of f* leads to f* = f(x*), which implies that the above inequality is an equality.
Thus,

FOx) = LA ) = f* = inf L, X', ).
xXE

This leads to (11) and
FOE) = LA 07) = f(XT) + (A 8(xY)) + (67, h(x7)).
As x* is feasible, that is, g(x*) < 0 and h(x*) = 0, we have Eq. (12).
2. (<) Suppose that x* is feasible and (11) and (12) hold.

In view of (11) and the fact that (\*, u*) is the geometric multiplier, we have

L(x* \*, u*) = f* = inf .
(x5 1) = f xlenDOf(X)

Moreover, the feasibility of x* and (12) imply that

L X %) = F) + D hig(x) + 3 ih(x7) = F(x).
=1

i=1

Combining the above two equations leads to

f) =f"= inf f(x),

x€Dy
which implies that x* is a global minimum of the primal problem.
The proof is complete. ]
Remark 7. Complementary slackness in (12) implies that

AF > 0= g(x") =0,
gi(x*) < 0=\ =0.

Complementary slackness is frequently used in characterizing the optimal solutions.
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2.4 Primal and dual optimal solutions

Theorem 2. Optimality Conditions (The KKT Conditions) A pair x* and (A*, u*) is an optimal
solution and geometric multiplier pair if and only if

x* e X, g(x*) <0,h(x") =0, (Primal Feasibility), (13)

A* >0, (Dual Feasibility), (14)

x* € argmin L(x, \*, u*), (Lagrangian Optimality), (15)
xeX

Ngi(x*)=0,i=1,...,m, (Complementary Slackness). (16)

Proof.

1. = Suppose that x* and (\*, 4*) is an optimal solution and geometric multiplier pair. Then,
the primal feasibility and dual feasibility hold.

Moreover,
FO) = = inf LA rf) < LA ) < (),
x€
which implies the Lagrangian optimality and the complementary slackness.
2. < Suppose that the conditions in (13) to (16) hold. Then

) = L(x* \*. 1*) = min L(x, \*, ") < inf L(x, \*, u*) < inf < f(x*
F(x") (X, A%, 1") min (x, ,u)_xlenDO (x, ’“)—xlenDof(X)—f(X)’

which implies that x* is the optimal solution and (A\*, u*) is the geometric multiplier.
The proof is complete. O

Proposition 3. Saddle Point Theorem (Optional) A pair x* and (A\*, u*) is an optimal solution-
geometric multiplier pair if and only if x* € X, \* > 0, and (x*, \*, u*) is a saddle point of the
Lagrangian, in the sense that

L(x*, A\, 1) < L(x™, A", 1) < L(x, A", "), VX € X, A > 0, p € RP. (17)
Proof.

1. = As the pair x* and (\*, ©*) is an optimal solution-geometric multiplier pair, we have (13)
to (16) hold. Clearly, we can see that x* € X, \* > 0, and the Lagrangian optimality in (15)
implies that

L(x*, \*, %) < L(x, \*, u*), Vx € X.
Moreover, in view of the definition of geometric multiplier, we have
* — . f L A* * — L * A* * .
£ = inf L{x, A" p7) = L(x", A", ")
Thus, combining the feasibility of x* and A > 0 leads to
LA p) = F(X7) + (A g(x7)) + (1, h(x%)) < f(x¥) = L7, A%, 1%),

which completes the proof.
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2. < In view of Theorem 2, it suffices to show that (13) and (16) hold. The left half of the
saddle point property of the Lagrangian in (17) implies that

L(x*, A\, p) < L(x", A%, %), VA > 0,
= f(x7) + (A g(x")) + (, h(x")) < L(x" A", p7), VA = 0.
In other words, L(x*,\, i) is upper bounded for any A > 0. Consequently, we have
g(x") <0, h(x*) =0,

i.e., the primal feasibility (13) holds (otherwise L(x*, A, 1) can not be upper bounded).

To show that the complementary slackness in (16) holds, we combine the primal feasibility of
x* and left half of (17)

FOE) + A g(x) < f(xF) + (A, 8(x7)), VA= 0,

A—=0 * * = * *
== (W g(xT) =) Afgi(x) > 0.
=1

On the other hand, in view of the facts that A* > 0 and g(x*) < 0, we have
Agi(x*) <0,i=1,...,m.

All together, we have
ANgi(x*)=0,i=1,...,m.

Thus, the complementary slackness holds and the proof is complete.

2.5 Strong duality

We discuss conditions that ensure the duality gap is zero.

Theorem 3. [1] Suppose that the primal problem in (1) is a convex optimization problem, that is,
fandg;,1=1,...,m are conver, h;, t = 1,...,p are affine, and X is a convex set. If there exists
an x € X such that g(x) < 0 and h(x) = 0, and 0 € int h(X), where h(X) = {h(x) : x € X}.
Then, the duality gap is zero. Furthermore, if f* is finite, then there exists at least one geometric
multiplier.

Proposition 4. Strong Duality Theorem - Linear Constraints Consider the primal problem.
Suppose that f is convexr, X is a polyhedron (that is, X = {x : (a;,x) < b;,i =1,...,7}), and f*
1s finite. Then, there is no duality gap and there exists at least one geometric multiplier.

Proposition 5. Linear and Quadratic Programming Duality Consider the primal problem.
Suppose that f is conver quadratic, X is a polyhedron, and f* is finite. Then, the primal and dual
problems have optimal solutions, and the duality gap is 0.
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3 The Dual Problem of SVM

The Primal Problem

Recall that the soft margin SVM takes the form of

mln—HWHZ—i-CZfz, (18)

=1
st yi((w,xi) +b) 2 1= &1 € [n],
&' > 0, 1€ [TL]

The primal variables are w, b, and &. By Proposition (5), the strong duality holds.

The Lagrangian
To find the dual problem of (18), we first construct the Lagrangian:

L(W7 b,f,a,u) ||WH2 + ngz + Zaz 1-¢& — yz(<w xz + b Z,Ufzfu

where a;, u; > 0,1 =1,...,n, are the dual variables.

The Dual Function

We next find the dual function:

q(a,pu) = inf L(w,b,&, a,p) (19)

w7b7£

.1 .
= inf 5ku2 =) oiyi(w, xi)

n
+ iIITJLf —b Z o5 Y;

1=1
+mfzc o = i)

=1

For fixed (a, ), let (W, b, €) be the optimal solution to the above problem. The first order optimal
condition implies that

n
vWL(VV7 ba€7awu)|W=W =0=w— Zaiyixi = 07

1=1

n
Vo L(w, b,&,a,p)],_; = 0= — Zaiyi =0,
=1

VgiL(W,b,f,a,uﬂ&:é =0=C—-a;—pu; =0,i=1,...,n.

Plugging the above equations into Eq. (19) leads to

= -z ZZ Qi YiY 5 XwX] + Zaz (20)

21]1
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The Dual Problem
Thus, the dual problem of the soft margin SVM in (18) is

max - = ZZ Q0 Yi Y4 XZ,XJ + Zal

11]1

Z QY = 07

i=1

C — QO — i = 07

Qg Z 0’

w;>0,9=1,...,n
We can remove p from the problem by noting that

,u,-:C’—a,-,z':l,...,n,

which leads to

mln ZZ 05y Y5 (Xi, Xj) Zal (21)

2131

n
Z Y = 07
=1

€0,CLi=1,...,n.

Complementary Slackness

Let (w*,0*,&*) and (a*, u*) be the optimal solutions to the primal and dual problems of SVM,
respectively. By Theorem 2, we write the complementary slackness as follows.

a;(1-& —yi((wh,x;) +0%))=0,i=1,...,n, (22)
pi(=&) = (C—ai)(=§) =0,i=1,...,n. (23)
By the complementary slackness in (22) and (23), we have several interesting observations.

1. Suppose that one of the entries of a*, say «j, falls in the interval (0,C). Then, the comple-
mentary slackness conditions (22) and (23) implies that

ye((W, xg) +b%) =1 =& an § =0,

respectively. Clearly, we have

ye((W*, xg) +0%) =1, (24)
which implies that x; is a support vector.

2. Suppose that
1= & —ye((W",xp) +07) <0.

Then, by (22) and (23), we have aj = 0 and & = 0, respectively. Thus,

ye((W*, xg) +0%) > 1,

which implies that x; is correctly classified and outside of the region between the marginal
hyperplanes.
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Recovering the Primal Optimum from the Dual Optimum

Proposition 6. Let a* be one of the optimal solutions to (21). Suppose that o, is one of the
entries of a* and aj, € (0,C), then we can find a primal optimal solution by

n
* *
W= E QO YiXs,
i=1

b* =yr — (W, xp).

10
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