Last Update: November 30, 2023

1 The Primal Problem

Recall from the last lecture that, we are interested in the problems that take the form of

$$
\begin{align*}
& \min _{\mathbf{x}} f(\mathbf{x}) \tag{1}\\
& \text { s.t. } \mathbf{g}(\mathbf{x}) \leq 0, \\
& \mathbf{h}(\mathbf{x})=0, \\
& \mathbf{x} \in X .
\end{align*}
$$

We denote the feasible set of (1) by

$$
\begin{equation*}
D_{0}=\{\mathbf{x}: \mathbf{g}(\mathbf{x}) \leq 0, \mathbf{h}(\mathbf{x})=0, \mathrm{x} \in X\} . \tag{2}
\end{equation*}
$$

Each element in D_{0} is called a feasible solution. The optimal function value is

$$
\begin{equation*}
f^{*}=\inf _{\mathbf{x} \in D_{0}} f(\mathbf{x}) . \tag{3}
\end{equation*}
$$

Assumption 1. Feasibility and Boundedness The feasible set is nonempty and the objective function is bounded from below, that is,

$$
-\infty<f^{*}=\inf _{\mathbf{x} \in D_{0}} f(\mathbf{x})<\infty .
$$

2 The Lagrangian Dual Problem

2.1 Weak duality

Recall from the last lecture that, for any $\lambda \geq 0$, we have

$$
q(\lambda, \mu) \leq f^{*}
$$

This immediately leads to the result as follows.
Theorem 1. Weak Duality Theorem We define the dual optimal value by

$$
\begin{equation*}
q^{*}=\sup _{\lambda \geq 0, \mu} q(\lambda, \mu) . \tag{4}
\end{equation*}
$$

Then, we have

$$
\begin{equation*}
q^{*} \leq f^{*} . \tag{5}
\end{equation*}
$$

The optimization problem in (4) is the so-called Lagrangian dual problem. As we have shown that the dual function q is concave, the Lagrangian dual problem is indeed equivalent to a convex optimization problem (why?).

Theorem 1 implies that, the dual optimal value is a lower bound of the optimal function value f^{*}. The difference between f^{*} and q^{*} is the so-called duality gap.

Definition 1. Duality gap is defined by

$$
f^{*}-q^{*} .
$$

Remark 1. Duality gap is a commonly used termination condition for a set of optimization algorithms.

In terms of the duality gap, we naturally have a few questions to ask.
Question 1. When is the duality gap zero, i.e., $q^{*}=f^{*}$?
Question 2. Suppose that the duality gap is zero, and there exists $\left(\lambda^{*}, \mu^{*}\right)$ with $\lambda^{*} \geq 0$ such that

$$
q^{*}=q\left(\lambda^{*}, \mu^{*}\right)=\inf _{\mathbf{x} \in X} L\left(\mathbf{x}, \lambda^{*}, \mu^{*}\right)=f^{*} .
$$

Then, if $\hat{\mathbf{x}}$ minimizes $L\left(\mathbf{x}, \lambda^{*}, \mu^{*}\right)$, that is,

$$
\begin{equation*}
\hat{\mathbf{x}} \in \underset{\mathbf{x} \in X}{\operatorname{argmin}} L\left(\mathbf{x}, \lambda^{*}, \mu^{*}\right), \tag{6}
\end{equation*}
$$

can we say that, $\hat{\mathbf{x}}$ is one of the optimal solutions to the primal problem, i.e.,

$$
\hat{\mathbf{x}} \in \underset{\mathbf{x} \in D_{0}}{\operatorname{argmin}} f(\mathbf{x}) ?
$$

All of the subsequent discussions are trying to answer the above questions.
Remark 2. The major motivation for introducing the Lagrangian is to transforming a constrained optimization problem with the feasible set D_{0} to an (almost) unconstrained optimization problem with feasible set X, while the optimal function value remains the same.

2.2 The Geometric Multipliers

Figure 1: Illustration of the geometric multipliers.
In view of Figure 1, the equality $q^{*}=f^{*}$ holds implies that, we can find a hyperplane with the normal vector $\left(\lambda^{*}, 1\right)$ that supports the set S from below intercepts the vertical axis at the level f^{*}. In this case, we can see that the duality gap is zero. This motivates the concept geometric multipliers as follows.

Definition 2. A vector $\left(\lambda^{*}, \mu^{*}\right)=\left(\lambda_{1}^{*}, \ldots, \lambda_{m}^{*}, \mu_{1}^{*}, \ldots, \mu_{p}^{*}\right)$ is said to be a geometric multiplier vector (or simply geometric multiplier) for the primal problem if

$$
\lambda_{i}^{*} \geq 0, i=1, \ldots, m
$$

and

$$
\begin{equation*}
f^{*}=\inf _{\mathbf{x} \in X} L\left(\mathbf{x}, \lambda^{*}, \mu^{*}\right) \tag{7}
\end{equation*}
$$

Remark 3. Notice that, Eq. (7) is a requirement of the geometric multiplier instead of a definition of f^{*}. Recall that,

$$
f^{*}=\inf _{\mathbf{x} \in D_{0}} f(\mathbf{x}) .
$$

Remark 4. The RHS of Eq. (7) is indeed $q\left(\lambda^{*}, \mu^{*}\right)$. Therefore, the existence of a geometric multiplier $\left(\lambda^{*}, \mu^{*}\right)$ implies that we can find a feasible solution $\left(\lambda^{*}, \mu^{*}\right)$ of the dual problem such that $f^{*}=q\left(\lambda^{*}, \mu^{*}\right)$.

The existence of geometric multipliers indeed implies that there is no duality gap. We formalize this result by the proposition as follows.

Proposition 1. Suppose that $\left(\lambda^{*}, \mu^{*}\right)$ is a geometric multiplier vector of the primal problem. Then, we have the following hold.

1. $q^{*}=q\left(\lambda^{*}, \mu^{*}\right)$, that is, $\left(\lambda^{*}, \mu^{*}\right)$ is one of the dual optimal solutions to the Lagrangian dual problem (4);
2. the duality gap is zero, i.e., $f^{*}=q^{*}$.

Proof. Recall that, the Lagrangian dual function is defined by

$$
q(\lambda, \mu)=\inf _{\mathbf{x} \in X} L(\mathbf{x}, \lambda, \mu)
$$

Thus, the right hand side of Eq. (7) is indeed $q\left(\lambda^{*}, \mu^{*}\right)$, and we can write the condition in Eq. (7) as

$$
\begin{equation*}
f^{*}=\inf _{\mathbf{x} \in X} L\left(\mathbf{x}, \lambda^{*}, \mu^{*}\right)=q\left(\lambda^{*}, \mu^{*}\right) \tag{8}
\end{equation*}
$$

By further noting the weak duality property in (5) and the condition $\lambda \geq 0$ in Definition 2, we can conclude that

$$
\begin{equation*}
q^{*}=q\left(\lambda^{*}, \mu^{*}\right) \tag{9}
\end{equation*}
$$

that is, the geometric multiplier $\left(\lambda^{*}, \mu^{*}\right)$ is one of the dual optimal solutions to the Lagrangian dual problem (4). Moreover, combining (8) and (9) immediately leads to $f^{*}=q^{*}$, which completes the proof.

Remark 5. If we can find a geometric multiplier, then there is no duality gap. However, the converse is not true. That is, if there is no duality gap, we may not be able to find a geometric multiplier. They may not even exist at all.

Example 1. Consider an optimization problem as follows.

$$
\begin{aligned}
& \min f(x)=x \\
& \text { s.t. } g(x)=x^{2} \leq 0, \\
& \quad x \in X=\mathbb{R}
\end{aligned}
$$

2.3 The Complementary Slackness

If a geometric multiplier $\left(\lambda^{*}, \mu^{*}\right)$ is known, we hope that $\hat{\mathbf{x}}$ that minimizes the Lagrangian $L\left(\mathbf{x}, \lambda^{*}, \mu^{*}\right)$ over $\mathrm{x} \in X$ is one of the optimal solutions to the primal problem as well. However, the vector $\hat{\mathbf{x}} \in \operatorname{argmin}_{\mathbf{x} \in X} L\left(\mathbf{x}, \lambda^{*}, \mu^{*}\right)$ may not even be in the feasible set D_{0}.

Example 2. Consider an optimization problem as follows.

$$
\begin{aligned}
& \min f(x)= \begin{cases}e^{x}, & x \leq 0 \\
1-x, & x \in[0,1] \\
0, & x>1\end{cases} \\
& \text { s.t. } g(x)=x \leq 0
\end{aligned}
$$

We can see that, the geometric multiplier λ^{*} is 0 , and the corresponding Lagrangian is

$$
L\left(x, \lambda^{*}\right)=f(x)
$$

Thus,

$$
\underset{x \in \mathbb{R}}{\operatorname{argmin}} L\left(x, \lambda^{*}\right)=\{x: x \geq 1\} .
$$

Clearly, none of the points that minimizes $L\left(x, \lambda^{*}\right)$ is feasible regarding the primal problem.
What if $\hat{\mathbf{x}} \in \operatorname{argmin}_{\mathbf{x} \in X} L\left(\mathbf{x}, \lambda^{*}, \mu^{*}\right)$ is a feasible solution to the primal problem? Can we conclude that such a $\hat{\mathbf{x}}$ is an optimal solution to the primal problem? The answer is still no.

Example 3. Consider an optimization problem as follows.

$$
\begin{aligned}
& \min f(x)= \begin{cases}-x, & x \leq 0, \\
0, & x>0\end{cases} \\
& \text { s.t. } g(x)=x \leq 0 .
\end{aligned}
$$

We can see that, the geometric multiplier λ^{*} is 1 , and the corresponding Lagrangian is

$$
L\left(x, \lambda^{*}\right)=f(x)+g(x)=\left\{\begin{array}{l}
0, x \leq 0 \\
x, x>0
\end{array}\right.
$$

Thus,

$$
\underset{x \in \mathbb{R}}{\operatorname{argmin}} L\left(x, \lambda^{*}\right)=\{x: x \leq 0\} .
$$

However, it is easy to see that only $x^{*}=0$ is the optimal solution to the problem.
Remark 6. Notice that, Example 3 also provides us an example that the geometric multiplier may not be unique. Indeed, for Example 3, the geometric multiplier is $\lambda^{*} \in[0,1]$.

Thus, we need extra conditions to find the desirable optimal solutions from the set in (6), which is the so-called complementary slackness.

Proposition 2. Let $\left(\lambda^{*}, \mu^{*}\right)$ be a geometric multiplier. Then, \mathbf{x}^{*} is a global minimum of the primal problem if and only if

$$
\begin{align*}
& \mathbf{x}^{*} \text { is feasible, } \tag{10}\\
& \mathbf{x}^{*} \in \underset{\mathbf{x} \in X}{\operatorname{argmin}} L\left(\mathbf{x}, \lambda^{*}, \mu^{*}\right), \tag{11}\\
& \lambda_{i}^{*} g_{i}\left(\mathbf{x}^{*}\right)=0, i=1, \ldots, m . \tag{12}
\end{align*}
$$

Proof.

1. (\Rightarrow) Suppose that \mathbf{x}^{*} is a global minimum of the primal problem. Then, \mathbf{x}^{*} must be feasible, and thus

$$
f\left(\mathbf{x}^{*}\right) \geq f\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{m} \lambda_{i} g\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{p} \mu_{i} h\left(\mathbf{x}^{*}\right)=L\left(\mathbf{x}^{*}, \lambda^{*}, \mu^{*}\right) \geq \inf _{\mathbf{x} \in X} L\left(\mathbf{x}, \lambda^{*}, \mu^{*}\right)=f^{*} .
$$

The definition of f^{*} leads to $f^{*}=f\left(\mathbf{x}^{*}\right)$, which implies that the above inequality is an equality. Thus,

$$
f\left(\mathbf{x}^{*}\right)=L\left(\mathbf{x}^{*}, \lambda^{*}, \mu^{*}\right)=f^{*}=\inf _{\mathbf{x} \in X} L\left(\mathbf{x}, \lambda^{*}, \mu^{*}\right) .
$$

This leads to (11) and

$$
f\left(\mathbf{x}^{*}\right)=L\left(\mathbf{x}^{*}, \lambda^{*}, \mu^{*}\right)=f\left(\mathbf{x}^{*}\right)+\left\langle\lambda^{*}, \mathbf{g}\left(\mathbf{x}^{*}\right)\right\rangle+\left\langle\mu^{*}, \mathbf{h}\left(\mathbf{x}^{*}\right)\right\rangle .
$$

As \mathbf{x}^{*} is feasible, that is, $\mathbf{g}\left(\mathbf{x}^{*}\right) \leq 0$ and $\mathbf{h}\left(\mathbf{x}^{*}\right)=0$, we have Eq. (12).
2. (\Leftarrow) Suppose that \mathbf{x}^{*} is feasible and (11) and (12) hold.

In view of (11) and the fact that $\left(\lambda^{*}, \mu^{*}\right)$ is the geometric multiplier, we have

$$
L\left(\mathbf{x}^{*}, \lambda^{*}, \mu^{*}\right)=f^{*}=\inf _{\mathbf{x} \in D_{0}} f(\mathbf{x}) .
$$

Moreover, the feasibility of \mathbf{x}^{*} and (12) imply that

$$
L\left(\mathrm{x}^{*}, \lambda^{*}, \mu^{*}\right)=f\left(\mathrm{x}^{*}\right)+\sum_{i=1}^{m} \lambda_{i} g\left(\mathrm{x}^{*}\right)+\sum_{i=1}^{p} \mu_{i} h\left(\mathbf{x}^{*}\right)=f\left(\mathrm{x}^{*}\right) .
$$

Combining the above two equations leads to

$$
f\left(\mathbf{x}^{*}\right)=f^{*}=\inf _{\mathbf{x} \in D_{0}} f(\mathbf{x}),
$$

which implies that \mathbf{x}^{*} is a global minimum of the primal problem.
The proof is complete.
Remark 7. Complementary slackness in (12) implies that

$$
\begin{aligned}
& \lambda_{i}^{*}>0 \Rightarrow g_{i}\left(\mathbf{x}^{*}\right)=0, \\
& g_{i}\left(\mathbf{x}^{*}\right)<0 \Rightarrow \lambda_{i}^{*}=0 .
\end{aligned}
$$

Complementary slackness is frequently used in characterizing the optimal solutions.

2.4 Primal and dual optimal solutions

Theorem 2. Optimality Conditions (The KKT Conditions) A pair \mathbf{x}^{*} and $\left(\lambda^{*}, \mu^{*}\right)$ is an optimal solution and geometric multiplier pair if and only if

$$
\begin{array}{rr}
\mathbf{x}^{*} \in X, \mathbf{g}\left(\mathbf{x}^{*}\right) \leq 0, \mathbf{h}\left(\mathbf{x}^{*}\right)=0, & \text { (Primal Feasibility), } \\
\lambda^{*} \geq 0, & \text { (Dual Feasibility), } \\
\mathbf{x}^{*} \in \underset{\mathbf{x} \in X}{\operatorname{argmin}} L\left(\mathbf{x}, \lambda^{*}, \mu^{*}\right), & \text { (Lagrangian Optimality), } \\
\lambda_{i}^{*} g_{i}\left(\mathbf{x}^{*}\right)=0, i=1, \ldots, m, & \text { (Complementary Slackness). } \tag{16}
\end{array}
$$

Proof.

1. \Rightarrow Suppose that \mathbf{x}^{*} and $\left(\lambda^{*}, \mu^{*}\right)$ is an optimal solution and geometric multiplier pair. Then, the primal feasibility and dual feasibility hold.
Moreover,

$$
f\left(\mathbf{x}^{*}\right)=f^{*}=\inf _{\mathbf{x} \in X} L\left(\mathbf{x}, \lambda^{*}, \mu^{*}\right) \leq L\left(\mathbf{x}^{*}, \lambda^{*}, \mu^{*}\right) \leq f\left(\mathbf{x}^{*}\right)
$$

which implies the Lagrangian optimality and the complementary slackness.
2 . \Leftarrow Suppose that the conditions in (13) to (16) hold. Then

$$
f\left(\mathbf{x}^{*}\right)=L\left(\mathbf{x}^{*}, \lambda^{*}, \mu^{*}\right)=\min _{\mathbf{x} \in X} L\left(\mathbf{x}, \lambda^{*}, \mu^{*}\right) \leq \inf _{\mathbf{x} \in D_{0}} L\left(\mathbf{x}, \lambda^{*}, \mu^{*}\right) \leq \inf _{\mathbf{x} \in D_{0}} f(\mathbf{x}) \leq f\left(\mathbf{x}^{*}\right),
$$

which implies that \mathbf{x}^{*} is the optimal solution and $\left(\lambda^{*}, \mu^{*}\right)$ is the geometric multiplier.
The proof is complete.
Proposition 3. Saddle Point Theorem (Optional) A pair \mathbf{x}^{*} and $\left(\lambda^{*}, \mu^{*}\right)$ is an optimal solutiongeometric multiplier pair if and only if $\mathbf{x}^{*} \in X, \lambda^{*} \geq 0$, and $\left(\mathbf{x}^{*}, \lambda^{*}, \mu^{*}\right)$ is a saddle point of the Lagrangian, in the sense that

$$
\begin{equation*}
L\left(\mathbf{x}^{*}, \lambda, \mu\right) \leq L\left(\mathbf{x}^{*}, \lambda^{*}, \mu^{*}\right) \leq L\left(\mathbf{x}, \lambda^{*}, \mu^{*}\right), \forall \mathbf{x} \in X, \lambda \geq 0, \mu \in \mathbb{R}^{p} . \tag{17}
\end{equation*}
$$

Proof.

1. \Rightarrow As the pair \mathbf{x}^{*} and $\left(\lambda^{*}, \mu^{*}\right)$ is an optimal solution-geometric multiplier pair, we have (13) to (16) hold. Clearly, we can see that $\mathbf{x}^{*} \in X, \lambda^{*} \geq 0$, and the Lagrangian optimality in (15) implies that

$$
L\left(\mathbf{x}^{*}, \lambda^{*}, \mu^{*}\right) \leq L\left(\mathbf{x}, \lambda^{*}, \mu^{*}\right), \forall \mathbf{x} \in X .
$$

Moreover, in view of the definition of geometric multiplier, we have

$$
f^{*}=\inf _{\mathbf{x} \in X} L\left(\mathbf{x}, \lambda^{*}, \mu^{*}\right)=L\left(\mathbf{x}^{*}, \lambda^{*}, \mu^{*}\right) .
$$

Thus, combining the feasibility of \mathbf{x}^{*} and $\lambda \geq 0$ leads to

$$
L\left(\mathbf{x}^{*}, \lambda, \mu\right)=f\left(\mathbf{x}^{*}\right)+\left\langle\lambda, \mathbf{g}\left(\mathbf{x}^{*}\right)\right\rangle+\left\langle\mu, \mathbf{h}\left(\mathbf{x}^{*}\right)\right\rangle \leq f\left(\mathbf{x}^{*}\right)=L\left(\mathbf{x}^{*}, \lambda^{*}, \mu^{*}\right),
$$

which completes the proof.
$2 . \Leftarrow$ In view of Theorem 2, it suffices to show that (13) and (16) hold. The left half of the saddle point property of the Lagrangian in (17) implies that

$$
\begin{aligned}
& L\left(\mathbf{x}^{*}, \lambda, \mu\right) \leq L\left(\mathbf{x}^{*}, \lambda^{*}, \mu^{*}\right), \forall \lambda \geq 0 \\
\Rightarrow & f\left(\mathbf{x}^{*}\right)+\left\langle\lambda, \mathbf{g}\left(\mathrm{x}^{*}\right)\right\rangle+\left\langle\mu, \mathbf{h}\left(\mathrm{x}^{*}\right)\right\rangle \leq L\left(\mathrm{x}^{*}, \lambda^{*}, \mu^{*}\right), \forall \lambda \geq 0 .
\end{aligned}
$$

In other words, $L\left(\mathbf{x}^{*}, \lambda, \mu\right)$ is upper bounded for any $\lambda \geq 0$. Consequently, we have

$$
\mathbf{g}\left(\mathbf{x}^{*}\right) \leq 0, \mathbf{h}\left(\mathbf{x}^{*}\right)=0,
$$

i.e., the primal feasibility (13) holds (otherwise $L\left(\mathbf{x}^{*}, \lambda, \mu\right)$ can not be upper bounded).

To show that the complementary slackness in (16) holds, we combine the primal feasibility of x^{*} and left half of (17)

$$
\begin{aligned}
& \quad f\left(\mathbf{x}^{*}\right)+\left\langle\lambda, \mathbf{g}\left(\mathbf{x}^{*}\right)\right\rangle \leq f\left(\mathbf{x}^{*}\right)+\left\langle\lambda^{*}, \mathbf{g}\left(\mathbf{x}^{*}\right)\right\rangle, \forall \lambda \geq 0, \\
& \xrightarrow{\lambda \rightarrow 0}\left\langle\lambda^{*}, \mathbf{g}\left(\mathbf{x}^{*}\right)\right\rangle=\sum_{i=1}^{m} \lambda_{i}^{*} g_{i}\left(\mathbf{x}^{*}\right) \geq 0 .
\end{aligned}
$$

On the other hand, in view of the facts that $\lambda^{*} \geq 0$ and $\mathbf{g}\left(\mathbf{x}^{*}\right) \leq 0$, we have

$$
\lambda_{i}^{*} g_{i}\left(\mathbf{x}^{*}\right) \leq 0, i=1, \ldots, m .
$$

All together, we have

$$
\lambda_{i}^{*} g_{i}\left(\mathrm{x}^{*}\right)=0, i=1, \ldots, m .
$$

Thus, the complementary slackness holds and the proof is complete.

2.5 Strong duality

We discuss conditions that ensure the duality gap is zero.
Theorem 3. [1] Suppose that the primal problem in (1) is a convex optimization problem, that is, f and $g_{i}, i=1, \ldots, m$ are convex, $h_{i}, i=1, \ldots, p$ are affine, and X is a convex set. If there exists an $\hat{\mathbf{x}} \in X$ such that $\mathbf{g}(\hat{\mathbf{x}})<\mathbf{0}$ and $\mathbf{h}(\hat{\mathbf{x}})=\mathbf{0}$, and $\mathbf{0} \in \operatorname{int} \mathbf{h}(X)$, where $\mathbf{h}(X)=\{\mathbf{h}(\mathbf{x}): \mathbf{x} \in X\}$. Then, the duality gap is zero. Furthermore, if f^{*} is finite, then there exists at least one geometric multiplier.

Proposition 4. Strong Duality Theorem - Linear Constraints Consider the primal problem. Suppose that f is convex, X is a polyhedron (that is, $X=\left\{\mathbf{x}:\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle \leq b_{i}, i=1, \ldots, r\right\}$), and f^{*} is finite. Then, there is no duality gap and there exists at least one geometric multiplier.

Proposition 5. Linear and Quadratic Programming Duality Consider the primal problem. Suppose that f is convex quadratic, X is a polyhedron, and f^{*} is finite. Then, the primal and dual problems have optimal solutions, and the duality gap is 0 .

3 The Dual Problem of SVM

The Primal Problem

Recall that the soft margin SVM takes the form of

$$
\begin{align*}
& \min _{\mathbf{w}, b, \xi} \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{n} \xi_{i}, \tag{18}\\
& \text { s.t. } y_{i}\left(\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle+b\right) \geq 1-\xi_{i}, i \in[n], \\
& \quad \xi_{i} \geq 0, i \in[n] .
\end{align*}
$$

The primal variables are \mathbf{w}, b, and ξ. By Proposition (5), the strong duality holds.
The Lagrangian
To find the dual problem of (18), we first construct the Lagrangian:

$$
L(\mathbf{w}, b, \xi, \alpha, \mu)=\frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{n} \xi_{i}+\sum_{i=1}^{n} \alpha_{i}\left(1-\xi_{i}-y_{i}\left(\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle+b\right)\right)-\sum_{i=1}^{n} \mu_{i} \xi_{i},
$$

where $\alpha_{i}, \mu_{i} \geq 0, i=1, \ldots, n$, are the dual variables.

The Dual Function

We next find the dual function:

$$
\begin{align*}
q(\alpha, \mu) & =\inf _{\mathbf{w}, b, \xi} L(\mathbf{w}, b, \xi, \alpha, \mu) \tag{19}\\
& =\inf _{\mathbf{w}} \frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{i=1}^{n} \alpha_{i} y_{i}\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle \\
& +\inf _{b}-b \sum_{i=1}^{n} \alpha_{i} y_{i} \\
& +\inf _{\xi} \sum_{i=1}^{n}\left(C-\alpha_{i}-\mu_{i}\right) \xi_{i} .
\end{align*}
$$

For fixed (α, μ), let ($\hat{\mathbf{w}}, \hat{b}, \hat{\xi}$) be the optimal solution to the above problem. The first order optimal condition implies that

$$
\begin{aligned}
\left.\nabla_{\mathbf{w}} L(\mathbf{w}, b, \xi, \alpha, \mu)\right|_{\mathbf{w}=\hat{\mathbf{w}}}=0 \Rightarrow \hat{\mathbf{w}}-\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i}=0, \\
\left.\nabla_{b} L(\mathbf{w}, b, \xi, \alpha, \mu)\right|_{b=\hat{b}}=0 \Rightarrow-\sum_{i=1}^{n} \alpha_{i} y_{i}=0, \\
\left.\nabla_{\xi_{i}} L(\mathbf{w}, b, \xi, \alpha, \mu)\right|_{\xi_{i}=\hat{\xi}_{i}}=0 \Rightarrow C-\alpha_{i}-\mu_{i}=0, i=1, \ldots, n .
\end{aligned}
$$

Plugging the above equations into Eq. (19) leads to

$$
\begin{equation*}
q(\alpha, \mu)=-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle+\sum_{i=1}^{n} \alpha_{i} . \tag{20}
\end{equation*}
$$

The Dual Problem

Thus, the dual problem of the soft margin SVM in (18) is

$$
\begin{array}{ll}
\max _{\alpha} & -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle+\sum_{i=1}^{n} \alpha_{i} \\
\text { s.t. } & \sum_{i=1}^{n} \alpha_{i} y_{i}=0, \\
& C-\alpha_{i}-\mu_{i}=0, \\
& \alpha_{i} \geq 0, \\
& \mu_{i} \geq 0, i=1, \ldots, n .
\end{array}
$$

We can remove μ from the problem by noting that

$$
\mu_{i}=C-\alpha_{i}, i=1, \ldots, n
$$

which leads to

$$
\begin{array}{ll}
\min _{\alpha} & \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle-\sum_{i=1}^{n} \alpha_{i} \tag{21}\\
\text { s.t. } & \sum_{i=1}^{n} \alpha_{i} y_{i}=0, \\
& \alpha_{i} \in[0, C], i=1, \ldots, n .
\end{array}
$$

Complementary Slackness

Let $\left(\mathbf{w}^{*}, b^{*}, \xi^{*}\right)$ and $\left(\alpha^{*}, \mu^{*}\right)$ be the optimal solutions to the primal and dual problems of SVM, respectively. By Theorem 2, we write the complementary slackness as follows.

$$
\begin{align*}
\alpha_{i}^{*}\left(1-\xi_{i}^{*}-y_{i}\left(\left\langle\mathbf{w}^{*}, \mathbf{x}_{i}\right\rangle+b^{*}\right)\right) & =0, i=1, \ldots, n, \tag{22}\\
\mu_{i}^{*}\left(-\xi_{i}^{*}\right)=\left(C-\alpha_{i}^{*}\right)\left(-\xi_{i}^{*}\right) & =0, i=1, \ldots, n . \tag{23}
\end{align*}
$$

By the complementary slackness in (22) and (23), we have several interesting observations.

1. Suppose that one of the entries of α^{*}, say α_{k}^{*}, falls in the interval $(0, C)$. Then, the complementary slackness conditions (22) and (23) implies that

$$
y_{k}\left(\left\langle\mathbf{w}^{*}, \mathbf{x}_{k}\right\rangle+b^{*}\right)=1-\xi_{k}^{*} \text { an } \xi_{k}^{*}=0,
$$

respectively. Clearly, we have

$$
\begin{equation*}
y_{k}\left(\left\langle\mathbf{w}^{*}, \mathbf{x}_{k}\right\rangle+b^{*}\right)=1, \tag{24}
\end{equation*}
$$

which implies that \mathbf{x}_{k} is a support vector.
2. Suppose that

$$
1-\xi_{k}^{*}-y_{k}\left(\left\langle\mathbf{w}^{*}, \mathbf{x}_{k}\right\rangle+b^{*}\right)<0
$$

Then, by (22) and (23), we have $\alpha_{k}^{*}=0$ and $\xi_{k}^{*}=0$, respectively. Thus,

$$
y_{k}\left(\left\langle\mathbf{w}^{*}, \mathbf{x}_{k}\right\rangle+b^{*}\right)>1,
$$

which implies that \mathbf{x}_{k} is correctly classified and outside of the region between the marginal hyperplanes.

Recovering the Primal Optimum from the Dual Optimum
Proposition 6. Let α^{*} be one of the optimal solutions to (21). Suppose that α_{k}^{*} is one of the entries of α^{*} and $\alpha_{k}^{*} \in(0, C)$, then we can find a primal optimal solution by

$$
\begin{aligned}
\mathbf{w}^{*} & =\sum_{i=1}^{n} \alpha^{*} y_{i} \mathbf{x}_{i}, \\
b^{*} & =y_{k}-\left\langle\mathbf{w}^{*}, \mathbf{x}_{k}\right\rangle .
\end{aligned}
$$

References

[1] M. Bazaraa, H. Sherali, and C. Shetty. Nonlinear Programming. Wiley-Interscience, 2006.

