Lecture 07. Subdifferential

Last Update: November 2, 2023

1 Introduction

Many popular ML models involve nondifferentiable objective functions, e.g., Lasso introduced as a special case of weighted least squares models. We generalize the concept of gradient for differentiable functions to the so-called subgradient for nondifferentiable convex functions.

2 Subgradients and Subdifferentials

Definition 1. A function $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}(\overline{\mathbb{R}}:=\mathbb{R} \cup\{\infty,-\infty\})$ is called proper if

1. $\exists \mathbf{x} \in \mathbb{R}^{n}$, such that $f(\mathbf{x})<\infty$;
2. $f(\mathbf{x})>-\infty, \forall \mathbf{x} \in \mathbb{R}^{n}$.

Definition 2. Let $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ be a proper convex function and let $\mathbf{x} \in \operatorname{dom} f$. A vector $\mathbf{g} \in \mathbb{R}^{n}$ such that

$$
\begin{equation*}
f(\mathbf{y}) \geq f(\mathbf{x})+\langle\mathbf{g}, \mathbf{y}-\mathbf{x}\rangle, \forall \mathbf{y} \in \mathbb{R}^{n} \tag{1}
\end{equation*}
$$

is called a subgradient of f at \mathbf{x}.

Figure 1: A subgradient.

Question 1. In Definition 2, shall we ask $\mathbf{y} \in \operatorname{dom} f$?
Remark 1. In view of Definition 2, the subgradient is defined for convex functions.
Example 1. Consider function $f(x)=|x|, x \in \mathbb{R}$. Find the subgradient of f at 0 .

Solution: Let $g \in \partial f(0)$. Then

$$
f(y)=|y| \geq f(0)+g(y-0)=g y .
$$

Clearly, the above inequality holds for all $y \in \mathbb{R}$ if and only if $g \in[-1,1]$. Thus, we have

$$
\partial f(0)=[-1,1],
$$

which is not unique.
Remark 2 (A geometric interpretation of subdifferential). Inspired by Fig. 1, we can link the subgradient of f to its epigraph. Indeed, for any $(\mathbf{y}, t) \in \mathbf{e p i} f$, we have

$$
t \geq f(\mathbf{y}) \geq f(\mathbf{x})+\langle\mathbf{g}, \mathbf{y}-\mathbf{x}\rangle
$$

which can be rewritten as

$$
\begin{equation*}
\left\langle\binom{\mathbf{g}}{-1},\binom{\mathbf{y}}{t}-\binom{\mathbf{x}}{f(\mathbf{x})}\right\rangle \leq 0 . \tag{2}
\end{equation*}
$$

The inequality (2) is the variational inequality characterizing the projection of a point lying on the ray with base $(\mathbf{x}, f(\mathbf{x}))$ and direction ($\mathbf{g},-1$) onto the set epi f.

Furthermore, Fig. 1 implies that the vector $(\mathbf{g},-1) \in \mathbb{R}^{n+1}$ determines a hyperplane supporting epi f at the point $(\mathbf{x}, f(\mathbf{x})$). Can you find the expression of this hyperplane?

Definition 3. The set of all subgradients of f at \mathbf{x} is called the subdifferential of f at \mathbf{x} and is denoted by $\partial f(\mathbf{x})$.

Theorem 1. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be convex and $\mathbf{x} \in \operatorname{int}(\operatorname{dom} f)$. Then, f is locally Lipschitz continuous at \mathbf{x}, that is, $\exists \epsilon>0$ and $M \geq 0$ such that

$$
|f(\mathbf{y})-f(\mathbf{x})| \leq M\|\mathbf{y}-\mathbf{x}\|, \forall\{\mathbf{y}:\|\mathbf{y}-\mathbf{x}\| \leq \epsilon\} .
$$

Remark 3. The value of the parameter M in Theorem 1 may depend on \mathbf{x}.
Theorem 2. [1] Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be convex and let $\mathbf{x} \in \operatorname{int}(\operatorname{dom} f)$. Then

1. the subdifferential $\partial f(\mathbf{x})$ is a nonempty, bounded, closed, and convex set;
2. for any $\mathbf{v} \in \mathbb{R}^{n}$, we have

$$
f^{\prime}(\mathbf{x} ; \mathbf{v})=\lim _{t \downarrow 0} \frac{f(\mathbf{x}+t \mathbf{v})-f(\mathbf{x})}{t}=\max _{\mathbf{g} \in \partial f(\mathbf{x})}\langle\mathbf{v}, \mathbf{g}\rangle
$$

where $f^{\prime}(\mathbf{x} ; \mathbf{v})$ is the directional derivative of f at \mathbf{x} along the direction \mathbf{v};
3. if f is differentiable at \mathbf{x}, then $\partial f(\mathbf{x})=\{\nabla f(\mathbf{x})\}$.

Proof.

1. We first show that $\partial f(\mathbf{x})$ is nonempty. The working horse is the supporting hyperplane theorem.

As the point $(\mathbf{x}, f(\mathbf{x}))$ is a boundary point of epi f, the supporting hyperplane theorem implies that we can separate $(\mathbf{x}, f(\mathbf{x}))$ and epi f by a hyperplane. That is, there exists a $(\mathbf{d}, \alpha) \in \mathbb{R}^{n+1}$ and $(\mathbf{d}, \alpha) \neq 0$ such that

$$
\langle(\mathbf{d}, \alpha),(\mathbf{y}, t)\rangle \leq\langle(\mathbf{d}, \alpha),(\mathbf{x}, f(\mathbf{x}))\rangle, \forall(\mathbf{y}, t) \in \mathbf{e p i} f,
$$

which can be rewritten as

$$
\begin{equation*}
\langle\mathbf{d}, \mathbf{y}\rangle+\alpha t \leq\langle\mathbf{d}, \mathbf{x}\rangle+\alpha f(\mathbf{x}), \forall(\mathbf{y}, t) \in \mathbf{e p i} f . \tag{3}
\end{equation*}
$$

As the inequality (3) holds for all $(\mathbf{y}, t) \in \mathbf{e p i} f$, we conclude $\alpha \leq 0$. We further claim that $\alpha \neq 0$. Suppose not, that is, $\alpha=0$ (and thus $\mathbf{d} \neq 0$), the inequality (3) becomes

$$
\begin{equation*}
\langle\mathbf{d}, \mathbf{y}-\mathbf{x}\rangle \leq 0, \forall(\mathbf{y}, t) \in \mathbf{e p} \mathbf{i} f \tag{4}
\end{equation*}
$$

As $\mathbf{x} \in \operatorname{int}(\operatorname{dom} f)$, there exists a small number $\epsilon>0$ such that $\mathbf{x}+\epsilon \mathbf{d} \in \operatorname{dom} f$. Replacing \mathbf{y} in (4) by $\mathbf{x}+\epsilon \mathbf{d}$ leads to a contradiction. Thus, we must have $\alpha<0$. Then, by replacing t by $f(\mathbf{y})$ in (3) and dividing both sides by α, we have

$$
f(\mathbf{y}) \geq f(\mathbf{x})+\langle-\mathbf{d} / \alpha, \mathbf{y}-\mathbf{x}\rangle, \forall \mathbf{y}
$$

which implies that $-\mathbf{d} / \alpha \in \partial f(\mathbf{x})$. Therefore, the set $\partial f(\mathbf{x})$ is nonempty.
We next show the boundedness of $\partial f(\mathbf{x})$. As $\mathbf{x} \in \operatorname{int}$ ($\operatorname{dom} f$), we can find a a small number $\epsilon_{1}>0$ such that $\left\{\mathbf{y}:\|\mathbf{y}-\mathbf{x}\|<\epsilon_{1}\right\} \subseteq \operatorname{dom} f$. Moreover, by Theorem 1 , we can find an $\epsilon_{2}>0$ and $M \geq 0$ such that $\forall\|\mathbf{y}-\mathbf{x}\| \leq \epsilon_{2}$, we have

$$
|f(\mathbf{y})-f(\mathbf{x})| \leq M\|\mathbf{y}-\mathbf{x}\| .
$$

Let $\epsilon=\min \left\{\epsilon_{1}, \epsilon_{2}\right\}$. For any $\mathbf{g} \in \partial f(\mathbf{x})$ and $\mathbf{g} \neq 0$, we choose

$$
\mathbf{x}^{\prime}=\mathbf{x}+\epsilon \mathbf{g} /\|\mathbf{g}\|,
$$

which leads to

$$
\epsilon\|\mathbf{g}\|=\left\langle\mathbf{g}, \mathbf{x}^{\prime}-\mathbf{x}\right\rangle \leq f\left(\mathbf{x}^{\prime}\right)-f(\mathbf{x}) \leq M\left\|\mathbf{x}^{\prime}-\mathbf{x}\right\|=M \epsilon
$$

Thus, $\partial f(\mathbf{x})$ is bounded.
The closedness and convexity of $\partial f(\mathbf{x})$ can be seen from its definition that, it is the intersection of a set of closed half-spaces.
2. We omit the proof here.
3. For any $\mathbf{v} \in \mathbb{R}^{n}$ and $\mathbf{g} \in \partial f(\mathbf{x})$, we have

$$
\langle\nabla f(\mathbf{x}), \mathbf{v}\rangle=f^{\prime}(\mathbf{x} ; \mathbf{v}) \geq\langle\mathbf{g}, \mathbf{v}\rangle .
$$

Changing the sign of \mathbf{v}, we conclude that

$$
\langle\nabla f(\mathbf{x}), \mathbf{v}\rangle=\langle\mathbf{g}, \mathbf{v}\rangle .
$$

By letting $\mathbf{v}=\mathbf{e}_{k}, k=1, \ldots, n$, we have $\mathbf{g}=\nabla f(\mathbf{x})$.

Question 2. Consider Theorem 2. The condition that $\mathbf{x} \in \operatorname{int}(\operatorname{dom} f)$ is fundamentally important in deriving the conclusions.

1. If $\mathbf{x} \in \operatorname{dom} f$ but it is not an interior point of $\operatorname{dom} f$, is it possible that $\partial f(\mathbf{x})=\emptyset$?
2. If $x \in \operatorname{relint}(\operatorname{dom} f)$, is it possible that $\partial f(\mathbf{x})$ is unbounded?

3 Subdifferential Calculus

Lemma 1. [2] Suppose that $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ is a convex function. For $\alpha>0$, let $h(\mathbf{x})=\alpha f(\mathbf{x})$. Then, h is convex, and $\partial h(\mathbf{x})=\alpha \partial f(\mathbf{x})$ for every \mathbf{x}.
Proof. We show the result directly from the definition. Indeed, $\mathbf{g} \in \partial f(\mathbf{x})$ if and only if for all \mathbf{y}

$$
h(\mathbf{y})=\alpha f(\mathbf{y}) \geq \alpha[f(\mathbf{x})+\langle\mathbf{g}, \mathbf{y}-\mathbf{x}\rangle]=h(\mathbf{x})+\langle\alpha \mathbf{g}, \mathbf{y}-\mathbf{x}\rangle,
$$

which implies that $\alpha \mathbf{g} \in \partial h(\mathbf{x})$.
Lemma 2. [2] Suppose that $f: \mathbb{R}^{m} \rightarrow \overline{\mathbb{R}}$ is a convex function, $A \in \mathbb{R}^{m \times n}$, and $\mathbf{b} \in \mathbb{R}^{m}$. Let $h(\mathbf{x})=f(A \mathbf{x}+\mathbf{b})$. Then, for any \mathbf{x}, we have

$$
\partial h(\mathbf{x})=A^{\top} \partial f(A \mathbf{x}+\mathbf{b})
$$

Proof. We show the result directly from the definition. Indeed, we have $\mathbf{g} \in \partial f(A \mathbf{x}+\mathbf{b})$ if and only if

$$
h(\mathbf{y})=f(A \mathbf{y}+\mathbf{b}) \geq f(A \mathbf{x}+\mathbf{b})+\langle\mathbf{g}, A \mathbf{y}-A \mathbf{x}\rangle=h(\mathbf{x})+\left\langle A^{\top} \mathbf{g}, \mathbf{y}-\mathbf{x}\right\rangle,
$$

which implies that $A^{\top} \mathbf{g} \in \partial h(\mathbf{x})$.
Theorem 3 (Moreau-Rockafellar Theorem). [2] Assume that $f=f_{1}+f_{2}$, where $f_{i}: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$, $i=1,2$, are convex proper functions. If there exists a point $\mathbf{x}_{0} \in \operatorname{dom} f$ such that f_{1} is continuous at \mathbf{x}_{0}, then

$$
\partial f(\mathbf{x})=\partial f_{1}(\mathbf{x})+\partial f_{2}(\mathbf{x}), \forall \mathbf{x} \in \operatorname{dom} f
$$

Definition 4. A convex function is called closed if its epigraph is a closed set.
Lemma 3. [1] Let functions $f_{i}(\mathbf{x}), i=1, \ldots, m$, be closed and convex. Then function

$$
f(\mathbf{x})=\max _{1 \leq i \leq m} f_{i}(\mathbf{x})
$$

is also closed and convex. For any $\mathbf{x} \in \operatorname{int}(\operatorname{dom} f)=\cap_{i=1}^{m} \operatorname{int}\left(\operatorname{dom} f_{i}\right)$, we have

$$
\partial f(\mathbf{x})=\operatorname{conv}\left\{\partial f_{i}(\mathbf{x}): i \in \mathcal{I}(\mathbf{x})\right\}
$$

where $\mathcal{I}(\mathbf{x})=\left\{i: f_{i}(\mathbf{x})=f(\mathbf{x})\right\}$.
Lemma 4. Let Δ be a set and

$$
f(\mathbf{x})=\sup \{\phi(\mathbf{y}, \mathbf{x}): \mathbf{y} \in \Delta\} .
$$

Suppose that for any fixed $\mathbf{y} \in \Delta$, the function $\phi(\mathbf{y}, \mathbf{x})$ is closed and convex in \mathbf{x}. Then, $f(\mathbf{x})$ is closed and convex. For and \mathbf{x} from

$$
\operatorname{dom} f=\left\{\mathbf{x} \in \mathbb{R}^{n}: \exists \gamma \text { such that } \phi(\mathbf{y}, \mathbf{x}) \leq \gamma, \forall \mathbf{y} \in \Delta\right\},
$$

we have

$$
\partial f(\mathbf{x}) \supseteq \operatorname{conv}\left\{\partial \phi_{\mathbf{x}}(\mathbf{y}, \mathbf{x}): \mathbf{y} \in \mathcal{I}(\mathbf{x})\right\}
$$

where $\mathcal{I}(\mathbf{x})=\{\mathbf{y}: \phi(\mathbf{y}, \mathbf{x})=f(\mathbf{x})\}$. When Δ is compact and $\phi\left(\mathbf{y}, \mathbf{x}^{\prime}\right)$ is continuous (upper semicontinuous) in \mathbf{y} for all \mathbf{x}^{\prime} in a neighborhood of \mathbf{x}, we get an equality above.

Example 2. Consider function $f(x)=|x|, x \in \mathbb{R}$. Find $\partial f(x)$.

Solution: Clearly, $f(x)$ is a convex function. We find $\partial f(x)$ by two different approaches.

1. We have derived that $\partial f(0)=[-1,1]$. Moreover, by noting that $f(x)$ is differentiable for $x \neq 0$, we have

$$
\partial f(x)= \begin{cases}1, & \text { if } x>0 \\ {[-1,1],} & \text { if } x=0 \\ -1, & \text { if } x<0\end{cases}
$$

2. Let $f_{1}(x)=x$ and $f_{2}(x)=-x$. Clearly, we have $\partial f_{1}(x)=\left\{\nabla f_{1}(x)\right\}=\{1\}$, and similarly $\partial f_{2}(x)=\{-1\}$.
Moreover, it is easy to see that $f(x)=\max \left\{f_{1}(x), f_{2}(x)\right\}$, and thus

$$
\begin{aligned}
\partial f(x) & =\operatorname{conv}\left\{\partial f_{i}(x): f_{i}(x)=f(x)\right\} \\
& = \begin{cases}1, & \text { if } x>0, \\
{[-1,1],} & \text { if } x=0, \\
-1, & \text { if } x<0 .\end{cases}
\end{aligned}
$$

Example 3. Let $f(\mathbf{x})=\|\mathbf{x}\|_{1}$, where $\mathbf{x} \in \mathbb{R}^{n}$. Find $\partial f(\mathbf{x})$.
Solution: It is easy to see that $f(\mathbf{x})$ is a convex function. We compute $\partial f(\mathbf{x})$ by two different approaches.

1. By Lemma 2 and Theorem 3, we have

$$
\begin{aligned}
f(\mathbf{x}) & =\|\mathbf{x}\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|=\sum_{i=1}^{n}\left|\mathbf{e}_{i}^{\top} \mathbf{x}\right| \\
\Rightarrow \partial f(\mathbf{x}) & =\partial\left(\sum_{i=1}^{n}\left|\mathbf{e}_{i}^{\top} \mathbf{x}\right|\right)=\sum_{i=1}^{n} \partial\left|\mathbf{e}_{i}^{\top} \mathbf{x}\right|=\sum_{i=1}^{n} \mathbf{e}_{i} \partial\left|x_{i}\right| \\
& =\left\{\mathbf{v} \in \mathbb{R}^{n}: v_{i}=\left\{\begin{array}{ll}
1, & \text { if } x_{i}>0, \\
{[-1,1],} & \text { if } x_{i}=0, \\
-1, & \text { if } x_{i}<0 .
\end{array}\right\}\right.
\end{aligned}
$$

2. We first write $f(\mathbf{x})$ as the supreme of a set of linear functions, that is,

$$
f(\mathbf{x})=\|\mathbf{x}\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|=\max \left\{\langle\mathbf{s}, \mathbf{x}\rangle: \mathbf{s} \in \mathbb{R}^{n},\left|s_{i}\right|=1, \forall i\right\} .
$$

Let $f_{\mathbf{s}}(\mathbf{x})=\langle\mathbf{s}, \mathbf{x}\rangle$ and $\Delta=\left\{\mathbf{s} \in \mathbb{R}^{n}:\left|s_{i}\right|=1, i=1, \ldots, n\right\}$. Then,

$$
f(\mathbf{x})=\|\mathbf{x}\|_{1}=\max \left\{f_{\mathbf{s}}(\mathbf{x}): \mathbf{s} \in \Delta\right\} .
$$

Clearly, the function $f_{\mathbf{s}}(\mathbf{x})$ is continuously differentiable and $\nabla f_{\mathbf{s}}(\mathbf{x})=\mathbf{s}$. Then, by Lemma 3 , we have

$$
\begin{aligned}
\partial f(\mathbf{x}) & =\operatorname{conv}\left\{\mathbf{s}: \mathbf{s} \in \Delta, f_{\mathbf{s}}(\mathbf{x})=\langle\mathbf{s}, \mathbf{x}\rangle=\|\mathbf{x}\|_{1}\right\} \\
& =\left\{\mathbf{v} \in \mathbb{R}^{n}: v_{i}=\left\{\begin{array}{ll}
1, & \text { if } x_{i}>0, \\
{[-1,1],} & \text { if } x_{i}=0, \\
-1, & \text { if } x_{i}<0 .
\end{array}\right\}\right.
\end{aligned}
$$

Example 4. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be defined by $f(\mathbf{x})=\max \left\{x_{i}, i=1, \ldots, n\right\}$, where x_{i} is the $i^{\text {th }}$ component of \mathbf{x}.

Solution: To see that $f(\mathbf{x})$ is convex, it suffices to note that

$$
f(\mathbf{x})=\max _{i=1, \ldots, n}\left\langle\mathbf{e}_{i}, \mathbf{x}\right\rangle .
$$

Let $f_{i}(\mathbf{x})=\left\langle\mathbf{e}_{i}, \mathbf{x}\right\rangle$ and $\mathcal{I}=\{1,2, \ldots, n\}$. Clearly, $\nabla f_{i}(\mathbf{x})=\mathbf{e}_{i}$. Thus, by Lemma 3, we have

$$
\partial f(\mathbf{x})=\operatorname{conv}\left\{\mathbf{e}_{i}: i \in \Delta, f_{i}(\mathbf{x})=\left\langle\mathbf{e}_{i}, \mathbf{x}\right\rangle=f(\mathbf{x})\right\}=\left\{\mathbf{v}: \mathbf{v} \in \mathbb{R}_{+}^{n},\|\mathbf{v}\|_{1}=1,\langle\mathbf{v}, \mathbf{x}\rangle=f(\mathbf{x})\right\} .
$$

Example 5. Let $f: \mathbb{S}^{n} \rightarrow \mathbb{R}$ be defined by $f(X)=\lambda_{\max }(X)$. Find $\partial f(X)$.
Solution: From the last lecture, we have shown that $f(X)$ is a convex function. By eigendecomposition, a symmetric matrix can be written as

$$
X=U \Lambda U^{\top},
$$

where $U^{\top} U=I$ and $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ with $\lambda_{1} \geq \cdots \geq \lambda_{n}$. Let $U=\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right)$, i.e., \mathbf{u}_{i} is the eigenvector corresponding to λ_{i}. We then write $f(X)$ as the maximum of a set of linear functions over X :

$$
f(X)=\max \{\langle\mathbf{s}, X \mathbf{s}\rangle:\|\mathbf{s}\|=1\}=\max \left\{\left\langle\mathbf{s s}^{\top}, X\right\rangle:\|\mathbf{s}\|=1\right\}
$$

where

$$
\langle X, Y\rangle=\operatorname{tr}\left(X^{\top} Y\right)=\sum_{i, j} x_{i, j} y_{i, j}
$$

denotes the inner product of two matrices X and Y. Let $f_{\mathbf{s}}(X)=\left\{\left\langle\mathbf{s s}^{\top}, X\right\rangle\right.$ and $\Delta=\{\mathbf{s}:\|\mathbf{s}\|=1\}$. Clearly, the function $f_{\mathbf{s}}(\mathbf{x})$ is continuously differentiable and $\nabla f_{\mathbf{s}}(\mathbf{x})=\mathbf{s s}^{\top}$. Then,

$$
\partial f(X)=\operatorname{conv}\left\{\mathbf{s s}^{\top}: \mathbf{s} \in \Delta, f_{\mathbf{s}}(X)=\left\langle\mathbf{s s}^{\top}, X\right\rangle=f(X)\right\}
$$

Next, let us find out which \mathbf{s} from Δ makes $f_{\mathbf{s}}(X)=f(X)$ holds. Assume that $\lambda_{\max }=\lambda_{1}=$
$\cdots=\lambda_{r}$, where $1 \leq r \leq n$. We can see that

$$
\mathbf{u}_{i} \in \underset{\|\mathbf{s}\|=1}{\operatorname{argmax}}\left\langle\mathbf{s s}^{\top}, X\right\rangle, i=1, \ldots, r .
$$

Let $U^{r}=\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}\right)$. Then,

$$
\Delta^{*}:=\underset{\mathbf{s} \in \Delta}{\operatorname{argmax}}\left\langle\mathbf{s s}^{\top}, X\right\rangle=\left\{\mathbf{v}: \mathbf{v} \in \operatorname{span} U^{r},\|\mathbf{v}\|=1\right\}=\left\{\mathbf{v}: \mathbf{v}=U^{r} \mathbf{q}, \mathbf{q} \in \mathbb{R}^{r},\|\mathbf{q}\|=1\right\} .
$$

By Lemma 4, we have

$$
\begin{aligned}
\partial f(X) & =\operatorname{conv}\left\{\mathbf{v v}^{\top}: \mathbf{v} \in \Delta^{*}\right\} \\
& =\operatorname{conv}\left\{U^{r} \mathbf{q q}^{\top}\left(U^{r}\right)^{\top}: \mathbf{q} \in \mathbb{R}^{r},\|\mathbf{q}\|=1\right\} \\
& =\left\{U^{r} G\left(U^{r}\right)^{\top}: G \succeq 0, \operatorname{tr}(G)=1\right\} .
\end{aligned}
$$

References

[1] Y. Nesterov. Introductory Lectures on Convex Optimization. Kluwer Academic Publishers, 2004.
[2] A. Ruszczyński. Nonlinear Optimization. Princeton University Press, 2006.

