Lecture 07. Subdifferential

Date: Oct 26, 2023

Fall 2023

Last Update: November 2, 2023

1 Introduction

Many popular ML models involve nondifferentiable objective functions, e.g., Lasso introduced as a special case of weighted least squares models. We generalize the concept of gradient for differentiable functions to the so-called subgradient for nondifferentiable convex functions.

2 Subgradients and Subdifferentials

Definition 1. A function $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ $(\overline{\mathbb{R}} := \mathbb{R} \cup \{\infty, -\infty\})$ is called *proper* if

- 1. $\exists \mathbf{x} \in \mathbb{R}^n$, such that $f(\mathbf{x}) < \infty$;
- 2. $f(\mathbf{x}) > -\infty, \forall \mathbf{x} \in \mathbb{R}^n$.

Definition 2. Let $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ be a proper convex function and let $\mathbf{x} \in \mathbf{dom} \ f$. A vector $\mathbf{g} \in \mathbb{R}^n$ such that

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle, \, \forall \, \mathbf{y} \in \mathbb{R}^n$$
(1)

is called a *subgradient* of f at \mathbf{x} .

Figure 1: A subgradient.

Question 1. In Definition 2, shall we ask $\mathbf{y} \in \mathbf{dom} f$?

Remark 1. In view of Definition 2, the subgradient is defined for **convex** functions.

Example 1. Consider function $f(x) = |x|, x \in \mathbb{R}$. Find the subgradient of f at 0.

Solution: Let $g \in \partial f(0)$. Then

$$f(y) = |y| \ge f(0) + g(y - 0) = gy.$$

Clearly, the above inequality holds for all $y \in \mathbb{R}$ if and only if $g \in [-1, 1]$. Thus, we have

$$\partial f(0) = [-1, 1],$$

which is not unique.

Remark 2 (A geometric interpretation of subdifferential). Inspired by Fig. 1, we can link the subgradient of f to its epigraph. Indeed, for any $(\mathbf{y}, t) \in \mathbf{epi} f$, we have

$$t \ge f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle,$$

which can be rewritten as

$$\left\langle \begin{pmatrix} \mathbf{g} \\ -1 \end{pmatrix}, \begin{pmatrix} \mathbf{y} \\ t \end{pmatrix} - \begin{pmatrix} \mathbf{x} \\ f(\mathbf{x}) \end{pmatrix} \right\rangle \le 0.$$
 (2)

The inequality (2) is the **variational inequality** characterizing the projection of a point lying on the ray with base $(\mathbf{x}, f(\mathbf{x}))$ and direction $(\mathbf{g}, -1)$ onto the set **epi** f.

Furthermore, Fig. 1 implies that the vector $(\mathbf{g}, -1) \in \mathbb{R}^{n+1}$ determines a hyperplane supporting **epi** f at the point $(\mathbf{x}, f(\mathbf{x}))$. Can you find the expression of this hyperplane?

Definition 3. The set of all subgradients of f at \mathbf{x} is called the *subdifferential* of f at \mathbf{x} and is denoted by $\partial f(\mathbf{x})$.

Theorem 1. Let $f : \mathbb{R}^n \to \mathbb{R}$ be convex and $\mathbf{x} \in \operatorname{int}(\operatorname{dom} f)$. Then, f is locally Lipschitz continuous at \mathbf{x} , that is, $\exists \epsilon > 0$ and $M \ge 0$ such that

$$|f(\mathbf{y}) - f(\mathbf{x})| \le M \|\mathbf{y} - \mathbf{x}\|, \,\forall \, \{\mathbf{y} : \|\mathbf{y} - \mathbf{x}\| \le \epsilon \}.$$

Remark 3. The value of the parameter M in Theorem 1 may depend on \mathbf{x} .

Theorem 2. [1] Let $f : \mathbb{R}^n \to \mathbb{R}$ be convex and let $\mathbf{x} \in int (dom f)$. Then

- 1. the subdifferential $\partial f(\mathbf{x})$ is a nonempty, bounded, closed, and convex set;
- 2. for any $\mathbf{v} \in \mathbb{R}^n$, we have

$$f'(\mathbf{x}; \mathbf{v}) = \lim_{t \downarrow 0} \frac{f(\mathbf{x} + t\mathbf{v}) - f(\mathbf{x})}{t} = \max_{\mathbf{g} \in \partial f(\mathbf{x})} \langle \mathbf{v}, \mathbf{g} \rangle$$

where $f'(\mathbf{x}; \mathbf{v})$ is the directional derivative of f at \mathbf{x} along the direction \mathbf{v} ;

3. if f is differentiable at \mathbf{x} , then $\partial f(\mathbf{x}) = \{\nabla f(\mathbf{x})\}.$

Proof.

1. We first show that $\partial f(\mathbf{x})$ is **nonempty**. The working horse is the **supporting hyperplane** theorem.

As the point $(\mathbf{x}, f(\mathbf{x}))$ is a boundary point of **epi** f, the supporting hyperplane theorem implies that we can separate $(\mathbf{x}, f(\mathbf{x}))$ and **epi** f by a hyperplane. That is, there exists a $(\mathbf{d}, \alpha) \in \mathbb{R}^{n+1}$ and $(\mathbf{d}, \alpha) \neq 0$ such that

$$\langle (\mathbf{d}, \alpha), (\mathbf{y}, t) \rangle \leq \langle (\mathbf{d}, \alpha), (\mathbf{x}, f(\mathbf{x})) \rangle, \forall (\mathbf{y}, t) \in \mathbf{epi} f,$$

which can be rewritten as

$$\langle \mathbf{d}, \mathbf{y} \rangle + \alpha t \le \langle \mathbf{d}, \mathbf{x} \rangle + \alpha f(\mathbf{x}), \, \forall \, (\mathbf{y}, t) \in \mathbf{epi} \, f.$$
 (3)

As the inequality (3) holds for all $(\mathbf{y}, t) \in \mathbf{epi} f$, we conclude $\alpha \leq 0$. We further claim that $\alpha \neq 0$. Suppose not, that is, $\alpha = 0$ (and thus $\mathbf{d} \neq 0$), the inequality (3) becomes

$$\langle \mathbf{d}, \mathbf{y} - \mathbf{x} \rangle \le 0, \, \forall \, (\mathbf{y}, t) \in \mathbf{epi} \, f.$$
 (4)

As $\mathbf{x} \in \mathbf{int} (\mathbf{dom} \ f)$, there exists a small number $\epsilon > 0$ such that $\mathbf{x} + \epsilon \mathbf{d} \in \mathbf{dom} \ f$. Replacing \mathbf{y} in (4) by $\mathbf{x} + \epsilon \mathbf{d}$ leads to a contradiction. Thus, we must have $\alpha < 0$. Then, by replacing t by $f(\mathbf{y})$ in (3) and dividing both sides by α , we have

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \langle -\mathbf{d}/\alpha, \mathbf{y} - \mathbf{x} \rangle, \, \forall \, \mathbf{y},$$

which implies that $-\mathbf{d}/\alpha \in \partial f(\mathbf{x})$. Therefore, the set $\partial f(\mathbf{x})$ is nonempty.

We next show the **boundedness** of $\partial f(\mathbf{x})$. As $\mathbf{x} \in \text{int} (\text{dom } f)$, we can find a small number $\epsilon_1 > 0$ such that $\{\mathbf{y} : \|\mathbf{y} - \mathbf{x}\| < \epsilon_1\} \subseteq \text{dom } f$. Moreover, by Theorem 1, we can find an $\epsilon_2 > 0$ and $M \ge 0$ such that $\forall \|\mathbf{y} - \mathbf{x}\| \le \epsilon_2$, we have

$$|f(\mathbf{y}) - f(\mathbf{x})| \le M \|\mathbf{y} - \mathbf{x}\|.$$

Let $\epsilon = \min{\{\epsilon_1, \epsilon_2\}}$. For any $\mathbf{g} \in \partial f(\mathbf{x})$ and $\mathbf{g} \neq 0$, we choose

$$\mathbf{x}' = \mathbf{x} + \epsilon \mathbf{g} / \|\mathbf{g}\|,$$

which leads to

$$\epsilon \|\mathbf{g}\| = \langle \mathbf{g}, \mathbf{x}' - \mathbf{x} \rangle \le f(\mathbf{x}') - f(\mathbf{x}) \le M \|\mathbf{x}' - \mathbf{x}\| = M\epsilon.$$

Thus, $\partial f(\mathbf{x})$ is bounded.

The closedness and convexity of $\partial f(\mathbf{x})$ can be seen from its definition that, it is the intersection of a set of closed half-spaces.

- 2. We omit the proof here.
- 3. For any $\mathbf{v} \in \mathbb{R}^n$ and $\mathbf{g} \in \partial f(\mathbf{x})$, we have

$$\langle \nabla f(\mathbf{x}), \mathbf{v} \rangle = f'(\mathbf{x}; \mathbf{v}) \ge \langle \mathbf{g}, \mathbf{v} \rangle.$$

Changing the sign of \mathbf{v} , we conclude that

$$\langle \nabla f(\mathbf{x}), \mathbf{v} \rangle = \langle \mathbf{g}, \mathbf{v} \rangle.$$

By letting $\mathbf{v} = \mathbf{e}_k$, $k = 1, \dots, n$, we have $\mathbf{g} = \nabla f(\mathbf{x})$.

Question 2. Consider Theorem 2. The condition that $\mathbf{x} \in \text{int} (\text{dom } f)$ is fundamentally important in deriving the conclusions.

- 1. If $\mathbf{x} \in \mathbf{dom} \ f$ but it is not an interior point of $\mathbf{dom} \ f$, is it possible that $\partial f(\mathbf{x}) = \emptyset$?
- 2. If $x \in \mathbf{relint} (\mathbf{dom} \ f)$, is it possible that $\partial f(\mathbf{x})$ is unbounded?

Lemma 1. [2] Suppose that $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ is a convex function. For $\alpha > 0$, let $h(\mathbf{x}) = \alpha f(\mathbf{x})$. Then, h is convex, and $\partial h(\mathbf{x}) = \alpha \partial f(\mathbf{x})$ for every \mathbf{x} .

Proof. We show the result directly from the definition. Indeed, $\mathbf{g} \in \partial f(\mathbf{x})$ if and only if for all \mathbf{y}

$$h(\mathbf{y}) = \alpha f(\mathbf{y}) \ge \alpha [f(\mathbf{x}) + \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle] = h(\mathbf{x}) + \langle \alpha \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle,$$

which implies that $\alpha \mathbf{g} \in \partial h(\mathbf{x})$.

Lemma 2. [2] Suppose that $f : \mathbb{R}^m \to \overline{\mathbb{R}}$ is a convex function, $A \in \mathbb{R}^{m \times n}$, and $\mathbf{b} \in \mathbb{R}^m$. Let $h(\mathbf{x}) = f(A\mathbf{x} + \mathbf{b})$. Then, for any \mathbf{x} , we have

$$\partial h(\mathbf{x}) = A^{\top} \partial f(A\mathbf{x} + \mathbf{b}).$$

Proof. We show the result directly from the definition. Indeed, we have $\mathbf{g} \in \partial f(A\mathbf{x} + \mathbf{b})$ if and only if

$$h(\mathbf{y}) = f(A\mathbf{y} + \mathbf{b}) \ge f(A\mathbf{x} + \mathbf{b}) + \langle \mathbf{g}, A\mathbf{y} - A\mathbf{x} \rangle = h(\mathbf{x}) + \langle A^{\top}\mathbf{g}, \mathbf{y} - \mathbf{x} \rangle,$$

which implies that $A^{\top}\mathbf{g} \in \partial h(\mathbf{x})$.

Theorem 3 (Moreau-Rockafellar Theorem). [2] Assume that $f = f_1 + f_2$, where $f_i : \mathbb{R}^n \to \mathbb{R}$, i = 1, 2, are convex proper functions. If there exists a point $\mathbf{x}_0 \in \mathbf{dom} \ f$ such that f_1 is continuous at \mathbf{x}_0 , then

$$\partial f(\mathbf{x}) = \partial f_1(\mathbf{x}) + \partial f_2(\mathbf{x}), \, \forall \, \mathbf{x} \in \mathbf{dom} \, f.$$

Definition 4. A convex function is called closed if its epigraph is a closed set.

Lemma 3. [1] Let functions $f_i(\mathbf{x})$, i = 1, ..., m, be closed and convex. Then function

$$f(\mathbf{x}) = \max_{1 \le i \le m} f_i(\mathbf{x})$$

is also closed and convex. For any $\mathbf{x} \in \operatorname{int} (\operatorname{\mathbf{dom}} f) = \bigcap_{i=1}^{m} \operatorname{int} (\operatorname{\mathbf{dom}} f_i)$, we have

$$\partial f(\mathbf{x}) = \mathbf{conv} \{ \partial f_i(\mathbf{x}) : i \in \mathcal{I}(\mathbf{x}) \},\$$

where $\mathcal{I}(\mathbf{x}) = \{i : f_i(\mathbf{x}) = f(\mathbf{x})\}.$

Lemma 4. Let Δ be a set and

$$f(\mathbf{x}) = \sup\{\phi(\mathbf{y}, \mathbf{x}) : \mathbf{y} \in \Delta\}.$$

Suppose that for any fixed $\mathbf{y} \in \Delta$, the function $\phi(\mathbf{y}, \mathbf{x})$ is closed and convex in \mathbf{x} . Then, $f(\mathbf{x})$ is closed and convex. For and \mathbf{x} from

dom
$$f = \{ \mathbf{x} \in \mathbb{R}^n : \exists \gamma \text{ such that } \phi(\mathbf{y}, \mathbf{x}) \leq \gamma, \forall \mathbf{y} \in \Delta \},\$$

we have

$$\partial f(\mathbf{x}) \supseteq \mathbf{conv} \{ \partial \phi_{\mathbf{x}}(\mathbf{y}, \mathbf{x}) : \mathbf{y} \in \mathcal{I}(\mathbf{x}) \},\$$

where $\mathcal{I}(\mathbf{x}) = \{\mathbf{y} : \phi(\mathbf{y}, \mathbf{x}) = f(\mathbf{x})\}$. When Δ is compact and $\phi(\mathbf{y}, \mathbf{x}')$ is continuous (upper semicontinuous) in \mathbf{y} for all \mathbf{x}' in a neighborhood of \mathbf{x} , we get an equality above.

Example 2. Consider function $f(x) = |x|, x \in \mathbb{R}$. Find $\partial f(x)$.

Solution: Clearly, f(x) is a convex function. We find $\partial f(x)$ by two different approaches.

1. We have derived that $\partial f(0) = [-1, 1]$. Moreover, by noting that f(x) is differentiable for $x \neq 0$, we have

$$\partial f(x) = \begin{cases} 1, & \text{if } x > 0, \\ [-1, 1], & \text{if } x = 0, \\ -1, & \text{if } x < 0. \end{cases}$$

2. Let $f_1(x) = x$ and $f_2(x) = -x$. Clearly, we have $\partial f_1(x) = \{\nabla f_1(x)\} = \{1\}$, and similarly $\partial f_2(x) = \{-1\}$.

Moreover, it is easy to see that $f(x) = \max\{f_1(x), f_2(x)\}$, and thus

$$\partial f(x) = \mathbf{conv} \{ \partial f_i(x) : f_i(x) = f(x) \}$$
$$= \begin{cases} 1, & \text{if } x > 0, \\ [-1, 1], & \text{if } x = 0, \\ -1, & \text{if } x < 0. \end{cases}$$

Example 3. Let $f(\mathbf{x}) = ||\mathbf{x}||_1$, where $\mathbf{x} \in \mathbb{R}^n$. Find $\partial f(\mathbf{x})$.

Solution: It is easy to see that $f(\mathbf{x})$ is a convex function. We compute $\partial f(\mathbf{x})$ by two different approaches.

1. By Lemma 2 and Theorem 3, we have

$$f(\mathbf{x}) = \|\mathbf{x}\|_{1} = \sum_{i=1}^{n} |x_{i}| = \sum_{i=1}^{n} |\mathbf{e}_{i}^{\top}\mathbf{x}|$$

$$\Rightarrow \partial f(\mathbf{x}) = \partial \left(\sum_{i=1}^{n} |\mathbf{e}_{i}^{\top}\mathbf{x}|\right) = \sum_{i=1}^{n} \partial |\mathbf{e}_{i}^{\top}\mathbf{x}| = \sum_{i=1}^{n} \mathbf{e}_{i} \partial |x_{i}|$$

$$= \left\{ \mathbf{v} \in \mathbb{R}^{n} : v_{i} = \begin{cases} 1, & \text{if } x_{i} > 0, \\ [-1, 1], & \text{if } x_{i} = 0, \\ -1, & \text{if } x_{i} < 0. \end{cases} \right\}$$

2. We first write $f(\mathbf{x})$ as the supreme of a set of linear functions, that is,

$$f(\mathbf{x}) = \|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i| = \max\{\langle \mathbf{s}, \mathbf{x} \rangle : \mathbf{s} \in \mathbb{R}^n, |s_i| = 1, \forall i\}.$$

Let $f_{\mathbf{s}}(\mathbf{x}) = \langle \mathbf{s}, \mathbf{x} \rangle$ and $\Delta = \{ \mathbf{s} \in \mathbb{R}^n : |s_i| = 1, i = 1, \dots, n \}$. Then,

$$f(\mathbf{x}) = \|\mathbf{x}\|_1 = \max\{f_{\mathbf{s}}(\mathbf{x}) : \mathbf{s} \in \Delta\}$$

Clearly, the function $f_{\mathbf{s}}(\mathbf{x})$ is continuously differentiable and $\nabla f_{\mathbf{s}}(\mathbf{x}) = \mathbf{s}$. Then, by Lemma 3, we have

$$\partial f(\mathbf{x}) = \mathbf{conv} \left\{ \mathbf{s} : \mathbf{s} \in \Delta, f_{\mathbf{s}}(\mathbf{x}) = \langle \mathbf{s}, \mathbf{x} \rangle = \|\mathbf{x}\|_{1} \right\}$$
$$= \left\{ \mathbf{v} \in \mathbb{R}^{n} : v_{i} = \left\{ \begin{aligned} 1, & \text{if } x_{i} > 0, \\ [-1, 1], & \text{if } x_{i} = 0, \\ -1, & \text{if } x_{i} < 0. \end{aligned} \right\}$$

Example 4. Let $f : \mathbb{R}^n \to \mathbb{R}$ be defined by $f(\mathbf{x}) = \max\{x_i, i = 1, ..., n\}$, where x_i is the i^{th} component of \mathbf{x} .

Solution: To see that $f(\mathbf{x})$ is convex, it suffices to note that

$$f(\mathbf{x}) = \max_{i=1,\dots,n} \langle \mathbf{e}_i, \mathbf{x} \rangle.$$

Let $f_i(\mathbf{x}) = \langle \mathbf{e}_i, \mathbf{x} \rangle$ and $\mathcal{I} = \{1, 2, \dots, n\}$. Clearly, $\nabla f_i(\mathbf{x}) = \mathbf{e}_i$. Thus, by Lemma 3, we have

$$\partial f(\mathbf{x}) = \mathbf{conv} \{ \mathbf{e}_i : i \in \Delta, f_i(\mathbf{x}) = \langle \mathbf{e}_i, \mathbf{x} \rangle = f(\mathbf{x}) \} = \{ \mathbf{v} : \mathbf{v} \in \mathbb{R}^n_+, \| \mathbf{v} \|_1 = 1, \langle \mathbf{v}, \mathbf{x} \rangle = f(\mathbf{x}) \}.$$

Example 5. Let $f : \mathbb{S}^n \to \mathbb{R}$ be defined by $f(X) = \lambda_{\max}(X)$. Find $\partial f(X)$.

Solution: From the last lecture, we have shown that f(X) is a convex function. By eigendecomposition, a symmetric matrix can be written as

$$X = U\Lambda U^{\top},$$

where $U^{\top}U = I$ and $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$ with $\lambda_1 \geq \cdots \geq \lambda_n$. Let $U = (\mathbf{u}_1, \ldots, \mathbf{u}_n)$, i.e., \mathbf{u}_i is the eigenvector corresponding to λ_i . We then write f(X) as the maximum of a set of linear functions over X:

$$f(X) = \max\{\langle \mathbf{s}, X\mathbf{s} \rangle : \|\mathbf{s}\| = 1\} = \max\{\langle \mathbf{s}\mathbf{s}^{\top}, X \rangle : \|\mathbf{s}\| = 1\},\$$

where

$$\langle X, Y \rangle = \operatorname{tr}(X^{\top}Y) = \sum_{i,j} x_{i,j} y_{i,j}$$

denotes the inner product of two matrices X and Y. Let $f_{\mathbf{s}}(X) = \{ \langle \mathbf{ss}^{\top}, X \rangle \text{ and } \Delta = \{ \mathbf{s} : \|\mathbf{s}\| = 1 \}$. Clearly, the function $f_{\mathbf{s}}(\mathbf{x})$ is continuously differentiable and $\nabla f_{\mathbf{s}}(\mathbf{x}) = \mathbf{ss}^{\top}$. Then,

$$\partial f(X) = \mathbf{conv} \{ \mathbf{ss}^\top : \mathbf{s} \in \Delta, f_{\mathbf{s}}(X) = \langle \mathbf{ss}^\top, X \rangle = f(X) \}.$$

Next, let us find out which s from Δ makes $f_s(X) = f(X)$ holds. Assume that $\lambda_{\max} = \lambda_1 = \lambda_1$

 $\cdots = \lambda_r$, where $1 \le r \le n$. We can see that

$$\mathbf{u}_i \in \operatorname*{\mathbf{argmax}}_{\|\mathbf{s}\|=1} \langle \mathbf{ss}^{\top}, X \rangle, \ i = 1, \dots, r.$$

Let $U^r = (\mathbf{u}_1, \ldots, \mathbf{u}_r)$. Then,

$$\Delta^* := \underset{\mathbf{s} \in \Delta}{\operatorname{argmax}} \langle \mathbf{s} \mathbf{s}^\top, X \rangle = \{ \mathbf{v} : \mathbf{v} \in \operatorname{span} U^r, \|\mathbf{v}\| = 1 \} = \{ \mathbf{v} : \mathbf{v} = U^r \mathbf{q}, \mathbf{q} \in \mathbb{R}^r, \|\mathbf{q}\| = 1 \}.$$

By Lemma 4, we have

$$\partial f(X) = \mathbf{conv} \left\{ \mathbf{v}\mathbf{v}^\top : \mathbf{v} \in \Delta^* \right\}$$
$$= \mathbf{conv} \left\{ U^r \mathbf{q}\mathbf{q}^\top (U^r)^\top : \mathbf{q} \in \mathbb{R}^r, \|\mathbf{q}\| = 1 \right\}$$
$$= \left\{ U^r G(U^r)^\top : G \succeq 0, \operatorname{tr}(G) = 1 \right\}.$$

References

- [1] Y. Nesterov. *Introductory Lectures on Convex Optimization*. Kluwer Academic Publishers, 2004.
- [2] A. Ruszczyński. Nonlinear Optimization. Princeton University Press, 2006.