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1 Introduction

Many popular ML models involve nondifferentiable objective functions, e.g., Lasso introduced as a
special case of weighted least squares models. We generalize the concept of gradient for differentiable
functions to the so-called subgradient for nondifferentiable convex functions.

2 Subgradients and Subdifferentials

Definition 1. A function f : Rn → R̄ (R̄ := R ∪ {∞,−∞}) is called proper if

1. ∃x ∈ Rn, such that f(x) < ∞;

2. f(x) > −∞, ∀x ∈ Rn.

Definition 2. Let f : Rn → R̄ be a proper convex function and let x ∈ dom f . A vector g ∈ Rn

such that

f(y) ≥ f(x) + ⟨g,y − x⟩, ∀y ∈ Rn (1)

is called a subgradient of f at x.

Figure 1: A subgradient.

Question 1. In Definition 2, shall we ask y ∈ dom f?

Remark 1. In view of Definition 2, the subgradient is defined for convex functions.

Example 1. Consider function f(x) = |x|, x ∈ R. Find the subgradient of f at 0.
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Solution: Let g ∈ ∂f(0). Then

f(y) = |y| ≥ f(0) + g(y − 0) = gy.

Clearly, the above inequality holds for all y ∈ R if and only if g ∈ [−1, 1]. Thus, we have

∂f(0) = [−1, 1],

which is not unique. ■

Remark 2 (A geometric interpretation of subdifferential). Inspired by Fig. 1, we can link
the subgradient of f to its epigraph. Indeed, for any (y, t) ∈ epi f , we have

t ≥ f(y) ≥ f(x) + ⟨g,y − x⟩,

which can be rewritten as 〈(
g
−1

)
,

(
y
t

)
−
(

x
f(x)

)〉
≤ 0. (2)

The inequality (2) is the variational inequality characterizing the projection of a point lying on
the ray with base (x, f(x)) and direction (g,−1) onto the set epi f .

Furthermore, Fig. 1 implies that the vector (g,−1) ∈ Rn+1 determines a hyperplane supporting
epi f at the point (x, f(x)). Can you find the expression of this hyperplane?

Definition 3. The set of all subgradients of f at x is called the subdifferential of f at x and is
denoted by ∂f(x).

Theorem 1. Let f : Rn → R be convex and x ∈ int (dom f). Then, f is locally Lipschitz
continuous at x, that is, ∃ ϵ > 0 and M ≥ 0 such that

|f(y)− f(x)| ≤ M∥y − x∥, ∀ {y : ∥y − x∥ ≤ ϵ}.

Remark 3. The value of the parameter M in Theorem 1 may depend on x.

Theorem 2. [1] Let f : Rn → R be convex and let x ∈ int (dom f). Then

1. the subdifferential ∂f(x) is a nonempty, bounded, closed, and convex set;

2. for any v ∈ Rn, we have

f ′(x;v) = lim
t↓0

f(x+ tv)− f(x)

t
= max

g∈∂f(x)
⟨v,g⟩,

where f ′(x;v) is the directional derivative of f at x along the direction v;

3. if f is differentiable at x, then ∂f(x) = {∇f(x)}.

Proof.

1. We first show that ∂f(x) is nonempty. The working horse is the supporting hyperplane
theorem.
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As the point (x, f(x)) is a boundary point of epi f , the supporting hyperplane theorem
implies that we can separate (x, f(x)) and epi f by a hyperplane. That is, there exists a
(d, α) ∈ Rn+1 and (d, α) ̸= 0 such that

⟨(d, α), (y, t)⟩ ≤ ⟨(d, α), (x, f(x))⟩, ∀ (y, t) ∈ epi f,

which can be rewritten as

⟨d,y⟩+ αt ≤ ⟨d,x⟩+ αf(x), ∀ (y, t) ∈ epi f. (3)

As the inequality (3) holds for all (y, t) ∈ epi f , we conclude α ≤ 0. We further claim that
α ̸= 0. Suppose not, that is, α = 0 (and thus d ̸= 0), the inequality (3) becomes

⟨d,y − x⟩ ≤ 0, ∀ (y, t) ∈ epi f. (4)

As x ∈ int (dom f), there exists a small number ϵ > 0 such that x+ ϵd ∈ dom f . Replacing
y in (4) by x+ ϵd leads to a contradiction. Thus, we must have α < 0. Then, by replacing t
by f(y) in (3) and dividing both sides by α, we have

f(y) ≥ f(x) + ⟨−d/α,y − x⟩, ∀y,

which implies that −d/α ∈ ∂f(x). Therefore, the set ∂f(x) is nonempty.

We next show the boundedness of ∂f(x). As x ∈ int (dom f), we can find a a small number
ϵ1 > 0 such that {y : ∥y − x∥ < ϵ1} ⊆ dom f . Moreover, by Theorem 1, we can find an
ϵ2 > 0 and M ≥ 0 such that ∀ ∥y − x∥ ≤ ϵ2, we have

|f(y)− f(x)| ≤ M∥y − x∥.

Let ϵ = min{ϵ1, ϵ2}. For any g ∈ ∂f(x) and g ̸= 0, we choose

x′ = x+ ϵg/∥g∥,

which leads to

ϵ∥g∥ = ⟨g,x′ − x⟩ ≤ f(x′)− f(x) ≤ M∥x′ − x∥ = Mϵ.

Thus, ∂f(x) is bounded.

The closedness and convexity of ∂f(x) can be seen from its definition that, it is the
intersection of a set of closed half-spaces.

2. We omit the proof here.

3. For any v ∈ Rn and g ∈ ∂f(x), we have

⟨∇f(x),v⟩ = f ′(x;v) ≥ ⟨g,v⟩.

Changing the sign of v, we conclude that

⟨∇f(x),v⟩ = ⟨g,v⟩.

By letting v = ek, k = 1, . . . , n, we have g = ∇f(x).

Question 2. Consider Theorem 2. The condition that x ∈ int (dom f) is fundamentally important
in deriving the conclusions.

1. If x ∈ dom f but it is not an interior point of dom f , is it possible that ∂f(x) = ∅?

2. If x ∈ relint (dom f), is it possible that ∂f(x) is unbounded?
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3 Subdifferential Calculus

Lemma 1. [2] Suppose that f : Rn → R̄ is a convex function. For α > 0, let h(x) = αf(x). Then,
h is convex, and ∂h(x) = α∂f(x) for every x.

Proof. We show the result directly from the definition. Indeed, g ∈ ∂f(x) if and only if for all y

h(y) = αf(y) ≥ α[f(x) + ⟨g,y − x⟩] = h(x) + ⟨αg,y − x⟩,

which implies that αg ∈ ∂h(x).

Lemma 2. [2] Suppose that f : Rm → R̄ is a convex function, A ∈ Rm×n, and b ∈ Rm. Let
h(x) = f(Ax+ b). Then, for any x, we have

∂h(x) = A⊤∂f(Ax+ b).

Proof. We show the result directly from the definition. Indeed, we have g ∈ ∂f(Ax + b) if and
only if

h(y) = f(Ay + b) ≥ f(Ax+ b) + ⟨g, Ay −Ax⟩ = h(x) + ⟨A⊤g,y − x⟩,

which implies that A⊤g ∈ ∂h(x).

Theorem 3 (Moreau-Rockafellar Theorem). [2] Assume that f = f1+ f2, where fi : Rn → R̄,
i = 1, 2, are convex proper functions. If there exists a point x0 ∈ dom f such that f1 is continuous
at x0, then

∂f(x) = ∂f1(x) + ∂f2(x), ∀x ∈ dom f.

Definition 4. A convex function is called closed if its epigraph is a closed set.

Lemma 3. [1] Let functions fi(x), i = 1, . . . ,m, be closed and convex. Then function

f(x) = max
1≤i≤m

fi(x)

is also closed and convex. For any x ∈ int (dom f) = ∩m
i=1 int (dom fi), we have

∂f(x) = conv {∂fi(x) : i ∈ I(x)},

where I(x) = {i : fi(x) = f(x)}.

Lemma 4. Let ∆ be a set and

f(x) = sup{ϕ(y,x) : y ∈ ∆}.

Suppose that for any fixed y ∈ ∆, the function ϕ(y,x) is closed and convex in x. Then, f(x) is
closed and convex. For and x from

dom f = {x ∈ Rn : ∃ γ such that ϕ(y,x) ≤ γ, ∀y ∈ ∆},

we have

∂f(x) ⊇ conv {∂ϕx(y,x) : y ∈ I(x)},

where I(x) = {y : ϕ(y,x) = f(x)}. When ∆ is compact and ϕ(y,x′) is continuous (upper semi-
continuous) in y for all x′ in a neighborhood of x, we get an equality above.

Example 2. Consider function f(x) = |x|, x ∈ R. Find ∂f(x).

4



Lecture 07. Subdifferential

Solution: Clearly, f(x) is a convex function. We find ∂f(x) by two different approaches.

1. We have derived that ∂f(0) = [−1, 1]. Moreover, by noting that f(x) is differentiable for
x ̸= 0, we have

∂f(x) =


1, if x > 0,

[−1, 1], if x = 0,

−1, if x < 0.

2. Let f1(x) = x and f2(x) = −x. Clearly, we have ∂f1(x) = {∇f1(x)} = {1}, and similarly
∂f2(x) = {−1}.
Moreover, it is easy to see that f(x) = max{f1(x), f2(x)}, and thus

∂f(x) = conv {∂fi(x) : fi(x) = f(x)}

=


1, if x > 0,

[−1, 1], if x = 0,

−1, if x < 0.

■

Example 3. Let f(x) = ∥x∥1, where x ∈ Rn. Find ∂f(x).

Solution: It is easy to see that f(x) is a convex function. We compute ∂f(x) by two different
approaches.

1. By Lemma 2 and Theorem 3, we have

f(x) = ∥x∥1 =
n∑

i=1

|xi| =
n∑

i=1

|e⊤i x|

⇒∂f(x) = ∂

(
n∑

i=1

|e⊤i x|

)
=

n∑
i=1

∂|e⊤i x| =
n∑

i=1

ei∂|xi|

=

v ∈ Rn : vi =


1, if xi > 0,

[−1, 1], if xi = 0,

−1, if xi < 0.


2. We first write f(x) as the supreme of a set of linear functions, that is,

f(x) = ∥x∥1 =
n∑

i=1

|xi| = max {⟨s,x⟩ : s ∈ Rn, |si| = 1,∀ i}.

Let fs(x) = ⟨s,x⟩ and ∆ = {s ∈ Rn : |si| = 1, i = 1, . . . , n}. Then,

f(x) = ∥x∥1 = max{fs(x) : s ∈ ∆}.
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Clearly, the function fs(x) is continuously differentiable and ∇fs(x) = s. Then, by Lemma
3, we have

∂f(x) = conv {s : s ∈ ∆, fs(x) = ⟨s,x⟩ = ∥x∥1}

=

v ∈ Rn : vi =


1, if xi > 0,

[−1, 1], if xi = 0,

−1, if xi < 0.


■

Example 4. Let f : Rn → R be defined by f(x) = max{xi, i = 1, . . . , n}, where xi is the ith

component of x.

Solution: To see that f(x) is convex, it suffices to note that

f(x) = max
i=1,...,n

⟨ei,x⟩.

Let fi(x) = ⟨ei,x⟩ and I = {1, 2, . . . , n}. Clearly, ∇fi(x) = ei. Thus, by Lemma 3, we have

∂f(x) = conv {ei : i ∈ ∆, fi(x) = ⟨ei,x⟩ = f(x)} = {v : v ∈ Rn
+, ∥v∥1 = 1, ⟨v,x⟩ = f(x)}.

■

Example 5. Let f : Sn → R be defined by f(X) = λmax(X). Find ∂f(X).

Solution: From the last lecture, we have shown that f(X) is a convex function. By eigen-
decomposition, a symmetric matrix can be written as

X = UΛU⊤,

where U⊤U = I and Λ = diag (λ1, . . . , λn) with λ1 ≥ · · · ≥ λn. Let U = (u1, . . . ,un), i.e., ui is the
eigenvector corresponding to λi. We then write f(X) as the maximum of a set of linear functions
over X:

f(X) = max {⟨s, Xs⟩ : ∥s∥ = 1} = max {⟨ss⊤, X⟩ : ∥s∥ = 1},

where
⟨X,Y ⟩ = tr(X⊤Y ) =

∑
i,j

xi,jyi,j

denotes the inner product of two matrices X and Y . Let fs(X) = {⟨ss⊤, X⟩ and ∆ = {s : ∥s∥ = 1}.
Clearly, the function fs(x) is continuously differentiable and ∇fs(x) = ss⊤. Then,

∂f(X) = conv {ss⊤ : s ∈ ∆, fs(X) = ⟨ss⊤, X⟩ = f(X)}.

Next, let us find out which s from ∆ makes fs(X) = f(X) holds. Assume that λmax = λ1 =
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· · · = λr, where 1 ≤ r ≤ n. We can see that

ui ∈ argmax
∥s∥=1

⟨ss⊤, X⟩, i = 1, . . . , r.

Let U r = (u1, . . . ,ur). Then,

∆∗ := argmax
s∈∆

⟨ss⊤, X⟩ = {v : v ∈ span U r, ∥v∥ = 1} = {v : v = U rq,q ∈ Rr, ∥q∥ = 1}.

By Lemma 4, we have

∂f(X) = conv
{
vv⊤ : v ∈ ∆∗

}
= conv {U rqq⊤(U r)⊤ : q ∈ Rr, ∥q∥ = 1}
={U rG(U r)⊤ : G ⪰ 0, tr(G) = 1}.

■
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