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1 Introduction

Recall the example we introduced last lecture as follows.

Example 1. Suppose p : Rn → R satisfies p(x) ≥ 0 for all x ∈ C and
∫
C p(x)dx = 1, where

C ⊆ Rn is convex. Then ∫
C
p(x)xdx ∈ C,

if the integral exists.

How to show the claim in Example 1 rigorously? In this lecture, we introduce a suite of powerful
tools in convex analysis, called separation theorems.

2 Projection

Consider a closed convex set C ⊆ Rn and a point x ∈ Rn. If there is a point z ∈ C that is closest
to x, we call z the projection of x on C, which is denoted by ΠC(x) = z. That is, the point z solves
the optimization problem as follows

inf
y∈C

∥x− y∥2. (1)

Question 1.

1. Can we always find a solution z to the problem in (1)?

2. Is the projection unique?

Indeed, the projection is always well defined, which is confirmed by the result as follows.

Theorem 1. Suppose that the set C ⊆ Rn is nonempty, convex, and closed. Then, for every
x ∈ Rn, there exists exactly one point z ∈ C that is closest to x.

Proof.
We first show the existence by the Extreme Value Theorem. We denote the objective function

of the problem in (1) by

f(y) = ∥x− y∥2,

which is clearly a continuous function of y. Let y0 be an arbitrary point in C, and

r = ∥x− y0∥.
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Figure 1: Illustration of the idea to prove Theorem 1. The left and right figures illustrate the
idea to prove the existence and the uniqueness of the projection of a given point with respect to a
nonempty closed convex set, respectively.

Then, if we denote the intersection of the ball B(x, r) and C by C ′, we can conclude that C ′ is
nonempty, as it at least includes y0. We can see that the problem

inf
y∈C′

f(y) (2)

shares the same solution set with the problem in (1).
We next show that C ′ is compact. Indeed, as both the ball B(x, r) and C are closed, the set

C ′ is closed as well. Moreover, the boundedness of B(x, r) implies that C ′ must be bounded. All
together, we conclude that the set C ′ is compact.

Due to the continuity of f and the compactness of C ′, the Extreme Value Theorem immediately
leads to the existence of z.

We next show the uniqueness of z. Suppose that two different point z1 and z2 solve the
optimization problem in (1). Let

γ = f(z1) = f(z2) = min
y∈C

∥x− y∥2.

Consider the point

z0 =
z1 + z2

2
.

Then, the Pythagorean theorem leads to

∥z0 − x∥2 = γ2 − 1

4
∥z1 − z2∥2 < γ2,

a contradiction. This show that z must be unique.

We next give an useful result that characterizes projections.

Lemma 1. Suppose that C is a nonempty closed convex set and let x ∈ Rn. Then,

z = ΠC(x) ⇔ ⟨x− z,y − z⟩ ≤ 0, ∀y ∈ C.
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The above inequality is the so-called variational inequality.

Proof.
(⇒) Suppose that z = ΠC(x). For any y ∈ C, we define

g(t) = f(z+ t(y − z)) = ∥x− z− t(y − z)∥2 = ∥x− z∥2 − 2t⟨x− z,y − z⟩+ t2∥y − z∥2. (3)

For any t ∈ (0, 1], we can see that,

g(0) < g(t), (why does this strict inequality hold?)

leading to

2⟨x− z,y − z⟩ < t∥y − z∥2.

As the above inequality holds for any t ∈ (0, 1], we can conclude that

⟨x− z,y − z⟩ ≤ 0.

(⇐) Suppose that

⟨x− z,y − z⟩ ≤ 0, ∀y ∈ C.

Eq. (3) implies that g(0) < g(1) for any y ̸= z, that is

f(z) < f(y), ∀y ∈ C,y ̸= z.

Thus, the point z must be the projection of x on C.

Question 2. What if C is an affine set in Lemma 1?

Theorem 2 (Nonexpansiveness). Suppose that C ⊆ Rn is closed and convex. Then, for all
x,y ∈ Rn, we have

∥ΠC(x)−ΠC(y)∥ ≤ ∥x− y∥.

Proof.
Lemma 1 leads to

⟨x−ΠC(x),ΠC(y)−ΠC(x)⟩ ≤ 0,

⟨y −ΠC(y),ΠC(x)−ΠC(y)⟩ ≤ 0.

Adding both sides we have

∥ΠC(x)−ΠC(y)∥2 + ⟨ΠC(x)−ΠC(y),y − x⟩ ≤ 0,

which implies that

∥ΠC(x)−ΠC(y)∥2 ≤ ⟨ΠC(x)−ΠC(y),x− y⟩ ≤ ∥ΠC(x)−ΠC(y)∥∥x− y∥.

The claim follows immediately.

Remark 1. We indeed have better results than nonexpansiveness, that is, firmly nonexpansive-
ness.
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3 Hyperplanes

Definition 1. [2] A hyperplane H ⊂ Rn is an (n− 1)-dimensional affine subset of Rn, that is,

H = {x ∈ Rn : ℓ(x) = α}

is the level set of a nontrivial linear function ℓ : Rn → R. If ℓ takes the form of

ℓ(x) = ⟨a,x⟩

for a ̸= 0 in Rn, then

H = H(a,α) = {x ∈ Rn : ⟨a,x⟩ = α}.

Definition 2. Let H = H(a,α) be a hyperplane in Rn. The hyperplane H separates Rn into two
closed half-spaces:

H+
(a,α) = {x ∈ Rn : ⟨a,x⟩ ≥ α},

H−
(a,α) = {x ∈ Rn : ⟨a,x⟩ ≤ α}.

We denote the corresponding open half-spaces by

H++
(a,α) = {x ∈ Rn : ⟨a,x⟩ > α},

H−−
(a,α) = {x ∈ Rn : ⟨a,x⟩ < α}.

Definition 3. Let C1 and C2 be two nonempty sets and H := H(a,α) a hyperplane in Rn.

1. H is called a separating hyperplane for the sets C1 and C2 if they are contained in the
two closed half-spaces determined by H, respectively, e.g., C1 ⊆ H+

(a,α) and C2 ⊆ H−
(a,α).

2. H is called a strictly separating hyperplane for the sets C1 and C2 if they are contained
in the two open half-spaces determined by H, respectively, e.g., C1 ⊆ H++

(a,α) and C2 ⊆ H−−
(a,α).

3. H is called a strongly separating hyperplane for the sets C1 and C2 if there exists β and
γ with γ < α < β, such that C1 ⊆ H−

(a,γ) and C2 ⊆ H+
(a,β).

4. H is called a properly separating hyperplane for the sets C1 and C2 if H separates C1

and C2, and C1 and C2 are not both contained in the hyperplane H.

If there exists a hyperplane H separating the sets C1 and C2 in one of the senses above, we say that
C1 and C2 can be separated, strictly separated, strongly separated, properly separated, respectively.

Question 3. Can you find an example in which C1 and C2 can be strictly separated instead of
being strongly separated?

4 Separation Theorems

4.1 Separation between a Point and a Convex Set

Theorem 3. Let C ⊆ Rn be a nonempty closed convex set, and let x0 /∈ C. Then, the set C and
the point x0 can be strongly separated, that is, there exists a nonzero a ∈ Rn and α < β such that
C ⊆ H−

(a,α) and x0 ∈ H+
(a,β).
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Figure 2: Separation Theorems (Theorems 3 and 4).

Proof. Theorem 1 implies the existence and uniqueness of the projection of x0 on C. We define

a = x0 −ΠC(x0).

As x0 /∈ C, the vector a ̸= 0. We then define

α =⟨a,ΠC(x0)⟩,
β =⟨a,x0⟩.

Then,

β − α = ⟨a,x0 −ΠC(x0)⟩ = ∥a∥2.

Thus, we have α < β.

We now show that C ⊆ H−
(a,α) and x0 ∈ H+

(a,β). The latter is trivial, as x0 ∈ H(a,β) ⊂ H+
(a,β).

To show the former, we note that for any y ∈ C, we have

⟨a,y⟩ = ⟨a,y −ΠC(x0) + ΠC(x0)⟩ = ⟨a,y −ΠC(x0)⟩+ α.

By Lemma 1, we have

⟨a,y −ΠC(x0)⟩ ≤ 0.

Combining the above two inequalities, we have

⟨a,y⟩ ≤ α, ∀y ∈ C,

which is equivalent to C ⊆ H−
(a,α). The proof is complete.

Theorem 3 leads to an important characterization of closed convex sets, which is stated as
follows.

Corollary 1. [1] The closure of the convex hull of a set C is the intersection of the closed half-
spaces that contain C. In particular, a closed convex set is the intersection of the closed half-spaces
that contain it.
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Proof. Let S be the intersection of all closed half-spaces that contain C. As every closed half-space
containing C must also contain cl (conv C) (why?), we must have cl (conv C) ⊂ S.

To show the reverse direction, we note that, for any x /∈ cl (conv C)—by Theorem 3—we
can find a hyperplane H strongly separating x and cl (conv C). Thus, the corresponding closed
half-space induced by H that contains cl (conv C) does not contain x, so x /∈ S. This shows that
cl (conv C) ⊃ S.

If the set C in Theorem 3 is not closed, the set C and the point x0 /∈ C may not be strongly
separated, as x0 can be a boundary point of C.

Definition 4. Let C ⊆ Rn be a nonempty set, and x0 a point in its boundary bd C, i.e.,

x0 ∈ bd C = cl C \ int C.

A hyperplane H := H(a,α) is called a supporting hyperplane to C at the point x0 if x0 ∈ H(a,α)

and C ⊆ H−
(a,α), that is,

⟨a,x⟩ ≤ ⟨a,x0⟩ = α, ∀x ∈ C.

Theorem 4 (Supporting Hyperplane Theorem). Let C ⊆ Rn be a nonempty convex set, and
x0 a point in its boundary bd C. Then, there exists a hyperplane supporting C at x0.

Proof. To simplify notations, let C̄ = cl C.
As x0 ∈ bd C, we can find a sequence (xk) with xk /∈ cl C, k = 1, 2, . . ., and xk → x0 (why?).

We then construct a sequence of unit norm vectors by

ak =
xk −ΠC̄(xk)

∥xk −ΠC̄(xk)∥
.

Notice that cl C is a closed convex set and xk /∈ cl C, k = 1, 2, . . .. By Theorem 3, we have

⟨ak,y⟩ ≤ ⟨ak,xk⟩, ∀y ∈ C.

As ∥ak∥ = 1 for all k = 1, 2, . . . ,, there exists a converging subsequence. Without loss of generality,
we assume that ak → a. Passing to the limit on both sides of the above inequality, we have

⟨a,y⟩ ≤ ⟨a,x0⟩, ∀y ∈ C,

which completes the proof (α = ⟨a,x0⟩).

Remark 2. To show Theorem 4, we construct convergent sequence so that we can apply the result
in Theorem 3. Indeed, different convergent sequences may lead to different separating hyperplanes.
Some of them are useful, that is, they can help us to distinguish different sets, while some of them
are not.

Remark 3. by Theorem 4, we can find a hyperplane such that it passes through x0 ∈ cl C and
separates x0 from C. Geometrically, this hyperplane just touches C and it is said to be supporting
C at x0.

However, given a nonempty set C—which may not be convex—and a point x0 ∈ bd C, the
hyperplane supporting C at x0 may not even exist, e.g., C = [0, 1] ∩Q and x0 = 0.5.
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Figure 3: Separating Hyperplane Theorem.

4.2 Separation between Convex Sets

Theorem 5 (Separating Hyperplane Theorem). Let C1 and C2 be two nonempty convex sets
in Rn. If C1 and C2 are disjoint, i.e., C1 ∩ C2 = ∅, there exists a hyperplane that separates them.

Proof. Consider the convex (why?) set:

C = C1 − C2 = {x ∈ Rn : x = x1 − x2, x1 ∈ C1,x2 ∈ C2}.

As C1 ∩ C2 = ∅, we have 0 /∈ C. Then, by Theorems 3 and 4, the set C and 0 can be separated,
i.e., there exists a vector a ̸= 0 such that

⟨a,x⟩ ≥ 0, ∀x ∈ C,

which is equivalent to

⟨a,x1⟩ ≥ ⟨a,x2⟩, x1 ∈ C1, x2 ∈ C2.

If we let α = infx1∈C1 ⟨a,x1⟩, the above inequality implies that C1 ⊆ H+
(a,α) and C2 ⊆ H−

(a,α). This
completes the proof.

Remark 4. One of the reasons why the separating theorems are important is that we want a
(simple) method to distinguish sets from one another. Given two sets, if they can be separated
by a hyperplane—that is, they are contained in the two closed half-spaces determined by the
hyperplane—we would like the linear function associated with the hyperplane takes different values
on points in these two sets. However, in some cases, even we can separate two convex sets in
the sense of the first part in Definition 2, the linear function associated with the hyperplane may
take the same value on the two sets, that is, we can not distinguish the two sets by the linear
function. For example, consider the unit disk C1 = {x ∈ R3 : ∥x∥ ≤ 1, x3 = 0} and the x-axis
C2 = {x ∈ R3 : x2 = x3 = 0} in R3. These two sets are both convex and can be separated by the
x, y plane. However, the corresponding linear function ℓ(x) = ⟨(0, 0, 1),x⟩ takes the same value on
both sets. Notice that, the aforementioned two sets are overlapping, as C1 ∩ C2 ̸= ∅.

Thus, we introduce the proper separation theorem, which turns out to be useful in some
important optimization scenarios and is more consistent with our intuition on the geometrical
meaning of separation.
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We first introduce a useful lemma.

Lemma 2. Let C be a nonempty convex set and a hyperplane H that contains C in one of its
closed half-spaces in Rn. Then,

C ⊂ H ⇔ relint C ∩H ̸= ∅.

Proof. (⇒) Suppose that C ⊂ H. Then, we must have relint C ⊂ H as relint C ⊆ C, and thus
relint C ∩H ̸= ∅.

(⇐) Suppose that relint C ∩ H ̸= ∅. Let x0 ∈ relint C ∩ H and H = H(a,α) with a ̸= 0.

Without loss of generality, we assume that C ⊆ H+
(a,α), i.e.,

⟨a,x⟩ ≥ α = ⟨a,x0⟩, ∀x ∈ C,

which is equivalent to

⟨a,x− x0⟩ ≥ 0, ∀x ∈ C. (4)

As x0 is a relative interior of C, for any x ∈ C and x ̸= x0, we can find a small positive number ϵ
such that (why?)

xτ = x0 − τ(x− x0) ∈ C, ∀ τ ∈ [0, ϵ).

Thus, for any τ ∈ [0, ϵ), we have

⟨a,xτ − x0⟩ ≥ 0 ⇒ −τ⟨a,x− x0⟩ ≥ 0 ⇒ ⟨a,x− x0⟩ ≤ 0

In view of the inequality in (4), we can conclude that

⟨a,x− x0⟩ = 0 ⇒ ⟨a,x⟩ = ⟨a,x0⟩ = α.

Thus, we have x ∈ H, which implies that C ⊆ H, as x is an arbitrary point in C.

Theorem 6 (Proper Separation Theorem). [1] Let C ⊆ Rn be a nonempty convex set, and
x0 ∈ Rn be a vector. There exists a hyperplane that properly separates C and x0 if and only if
x0 /∈ relint C.

Proof. (⇒) Suppose that there exists a hyperplane H(a,α) that properly separates C and x0. We
have two possibilities.

1. The point x0 /∈ H(a,α). Without loss of generality, we assume that x0 ∈ H++
(a,α) and C ⊆ H−

(a,α).

Then, we must have x0 /∈ C and thus x0 /∈ relint C.

2. The set C ⊈ H(a,α). Without loss of generality, we assume that x0 ∈ H+
(a,α) and C ⊆ H−

(a,α).

Due to Lemma 2, we have relint C ∩ H = ∅, which implies that relint C ⊆ H−−
(a,α). Thus,

we can conclude that x0 /∈ relint C.

(⇐) Conversely, suppose that x0 /∈ relint C. To show the existence of the hyperplane that
properly separates C and x0, we consider two cases as follows.

1. The point x0 /∈ aff C. As aff C is closed and convex, Theorem 3 implies that x0 and aff C
can be strongly separated, and thus x0 and C can be properly separated.
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2. The point x0 ∈ aff C. We have two possibilities.

(a) The point x0 /∈ cl C. Again, by Theorem 3, there exists a hyperplane that can strongly
separate x0 and C and thus also properly separate x0 and C.

(b) The point x0 ∈ cl C. As x0 /∈ relint C, the point x0 must be a relative boundary point
of C. We consider two cases as follows.

i. rank(aff C) = n. Then, the point x0 is indeed a boundary point of C. By the
Supporting Hyperplane Theorem, there exists a hyperplane H(a,α) supporting C at
x0, i.e.,

⟨a,x⟩ ≤ ⟨a,x0⟩ = α, ∀x ∈ C.

We can see that int C ∩H(a,α) = ∅ (why?). Then, Lemma 2 implies that C ⊈ H,
that is, H(a,α) properly separates C and x0.

ii. rank(aff C) < n. Let S be the subspace that is parallel to aff C, and consider the
set Ĉ = C + S⊥. Clearly, rank(aff Ĉ) = n, and x0 ∈ bd Ĉ. By a similar argument
with the last part, we can find a hyperplane H that properly separates x0 and Ĉ,
and thus properly separates x0 and C as well.

All together, the proof is complete.

Theorem 7 (Proper Separation of Two Convex Sets). [1] Let C1 and C2 be two nonempty
convex subsets of Rn. There exists a hyperplane that properly separates C1 and C2 if and only if

relint C1 ∩ relint C2 = ∅.
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