Lecture 04. Convex Sets

Lecturer: Jie Wang
Date: Sep 28, 2023

Key distinction is not linear vs. nonlinear, but convex or. nonconvex.
R. Tyrrell Rockafellar

1 Introduction

Many popular machine learning models take the form of

$$
\min _{\mathbf{w}} f(\mathbf{w})+\lambda \Omega(\mathbf{w}),
$$

where f is the so-called loss function that measures how well the model fits the training data, Ω is a regularization term, and $\lambda>0$ is the regularization parameter. When f is the least squares loss and Ω is the square of the ℓ_{2} norm of the model parameters, we have the well-known ridge regression:

$$
\begin{equation*}
\min _{\mathbf{w}} \frac{1}{2}\|\mathbf{y}-\mathbf{X} \mathbf{w}\|_{2}^{2}+\lambda\|\mathbf{w}\|_{2}^{2} . \tag{1}
\end{equation*}
$$

If we replace the regularization term in (1) by the ℓ_{1} norm, we have another popular model, that is, Lasso, as follows.

$$
\begin{equation*}
\min _{\mathbf{w}} \frac{1}{2}\|\mathbf{y}-\mathbf{X w}\|_{2}^{2}+\lambda\|\mathbf{w}\|_{1} . \tag{2}
\end{equation*}
$$

We have seen that, the ridge regression admits a closed form solution, while the computational cost can be expensive as it involves finding the inverse of a large-scale matrix. Noticing that the objective function in (1) is differentiable, we can use the classical gradient descent method to iteratively find a solution up to a given accuracy. However, this approach does not work for the Lasso problem in (2), as the regularizer is not differentiable.

Problems like (2) involving nondifferentiable terms are the so-called nonsmooth problems, which consist of a major research topic - called sparse learning - in machine learning. To deal with the nonsmooth problems, we need to equip us with a suite of new tools. In the next couple of lectures, we study a type of optimization problems - that is, convex optimization problems - which includes many popular sparse learning models as special cases.

2 Affine Sets

Definition 1. A set $C \subseteq \mathbb{R}^{n}$ is affine if the line through any two distinct points in C lies in C, i.e., if for any $\mathbf{x}_{1}, \mathbf{x}_{2} \in C$, where $\mathbf{x}_{1} \neq \mathbf{x}_{2}$, and $\theta \in \mathbb{R}$, we have $\theta \mathbf{x}_{1}+(1-\theta) \mathbf{x}_{2} \in C$.

Definition 2. A point x is called an affine combination of points $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{m}$ if there exists $\theta_{1}, \theta_{2}, \ldots, \theta_{m} \in \mathbb{R}$ such that

$$
\mathbf{x}=\theta_{1} \mathbf{x}_{1}+\theta_{2} \mathbf{x}_{2}+\ldots+\theta_{m} \mathbf{x}_{m}
$$

and

$$
\theta_{1}+\theta_{2}+\ldots+\theta_{m}=1
$$

Figure 1: The line passing through x_{1} and x_{2} is described parametrically by $\theta x_{1}+(x-\theta) x_{2}$, where θ goes over the real line.

If C is an affine set and $\mathbf{x}_{0} \in C$, then the set

$$
V=C-\mathbf{x}_{0}=\left\{\mathbf{x}-\mathbf{x}_{0}: \mathbf{x} \in C\right\}
$$

is a subspace. Thus, we can also describe the affine set C by

$$
C=V+\mathbf{x}_{0}=\left\{\mathbf{v}+\mathbf{x}_{0}: \mathbf{v} \in V\right\} .
$$

The dimension of an affine set C is the dimension of the subspace $V=C-\mathbf{x}_{0}$, where \mathbf{x}_{0} is an arbitrary point in C.

Example 1 (Solution set of linear equations). Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^{m}$. The solution set $C=\{\mathbf{x}: \mathbf{A} \mathbf{x}=\mathbf{b}\}$ is an affine set.

Definition 3. The affine hull of a set C is the set of all affine combinations of points in C, which is denoted aff C :

$$
\text { aff } C=\left\{\theta_{1} \mathbf{x}_{1}+\cdots+\theta_{k} \mathbf{x}_{k}: \mathbf{x}_{1}, \ldots, \mathbf{x}_{k} \in C, \theta_{1}+\cdots+\theta_{k}=1\right\} .
$$

The affine dimension of a set C is the dimension of its affine hull.
Proposition 1. The affine hull of set C is the smallest affine set that contains C.
Definition 4. The relative interior of the set C, denoted relint C, is its interior relative to aff C :

$$
\text { relint } C=\{\mathbf{x} \in C: \exists r>0, B(\mathbf{x}, r) \cap \text { aff } C \subseteq C\}
$$

where $B(\mathbf{x}, r)=\{\mathbf{y}:\|\mathbf{y}-\mathbf{x}\| \leq r\}$ is the ball of radius r and centered at x. The relative boundary of C is defined as $\bar{C} \backslash$ relint C, where \bar{C} is the closure of C.

3 Convex Sets

Definition 5. In \mathbb{R}^{n}, a point \mathbf{x} is a convex combination of the points $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right\}$ if

$$
\mathbf{x}=\theta_{1} \mathbf{x}_{1}+\theta_{2} \mathbf{x}_{2}+\cdots+\theta_{k} \mathbf{x}_{k}
$$

where $\theta_{i} \geq 0$ for $i=1, \ldots, k$ and

$$
\theta_{1}+\theta_{2}+\ldots+\theta_{k}=1
$$

Figure 2: Convex and nonconvex sets.

Definition 6. The convex hull of a set $C \subseteq \mathbb{R}^{n}$, denoted by conv C, is the set of all convex combinations of points in C :

$$
\operatorname{conv} C=\left\{\sum_{i=1}^{k} \theta_{i} \mathbf{x}_{i}: \mathbf{x}_{i} \in C, \theta_{i} \geq 0, \sum_{i=1}^{k} \theta_{i}=1\right\}
$$

The idea of convex combination can be generalized to include infinite sums, integrals, and, in the most general form, probability distributions [1] (expectation).

Figure 3: Convex hull.
Definition 7. A set C is convex if the line segment between any two points in C lies in C; that is, if $\forall \mathbf{x}_{1}, \mathbf{x}_{2} \in C$ and $\forall \theta \in[0,1]$, we have

$$
\theta \mathbf{x}_{1}+(1-\theta) \mathbf{x}_{2} \in C
$$

Example 2. Suppose $p: \mathbb{R}^{n} \rightarrow \mathbb{R}$ satisfies $p(\mathbf{x}) \geq 0$ for all $\mathbf{x} \in C$ and $\int_{C} p(\mathbf{x}) d \mathbf{x}=1$, where $C \subseteq \mathbb{R}^{n}$ is convex. Then

$$
\int_{C} p(\mathbf{x}) \mathbf{x} d \mathbf{x} \in C
$$

if the integral exists.
Definition 8. A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is affine if it takes the form of:

$$
f(\mathbf{x})=\mathbf{A} \mathbf{x}+\mathbf{b},
$$

where $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^{m}$.

Proposition 2.

1. The intersection $\cap_{i \in \mathcal{I}} C_{i}$ of any collection $\left\{C_{i}: i \in \mathcal{I}\right\}$ of convex sets is convex, where \mathcal{I} is an index set.
2. The closure and the interior of a convex set are convex.
3. The image and the inverse image of a convex set under an affine function are convex.

Example 3.

1. Hyperplane: $\left\{\mathbf{x}: \mathbf{a}^{\top} \mathbf{x}=b\right\}$, where $\mathbf{a} \neq 0$ and $b \in \mathbb{R}$.
2. Halfspace: $\left\{\mathbf{x}: \mathbf{a}^{\top} \mathbf{x} \leq b\right\}$, where $\mathbf{a} \neq 0$ and $b \in \mathbb{R}$.
3. Norm ball: $\left\{\mathbf{x}:\left\|\mathbf{x}-\mathbf{x}_{0}\right\| \leq r\right\}$, where $r>0$.
4. Polyhedron: $\left\{\mathbf{x}: \mathbf{a}_{i}^{\top} \mathbf{x} \leq b_{i}, i=1, \ldots, m\right\}$, where $\mathbf{a}_{i} \neq 0$ and $b_{i} \in \mathbb{R}$ for $i=1, \ldots, m$.
5. Positive definite matrices \mathbf{S}_{++}^{n}.

Definition 9. A set C is called a cone, or nonnegative homogeneous, if $\forall \mathrm{x} \in C$ and $\theta \in[0, \infty)$, we have $\theta \mathbf{x} \in C$. A set C is a convex cone if it is convex and a cone; that is, $\forall \mathbf{x}_{1}, \mathbf{x}_{2} \in C$ and $\theta_{1}, \theta_{2} \geq 0$, we have

$$
\theta_{1} \mathbf{x}_{1}+\theta_{2} \mathbf{x}_{2} \in C
$$

Figure 4: Cones.

- A point of the form $\theta_{1} \mathbf{x}_{1}+\cdots+\theta_{m} \mathbf{x}_{m}$ with all nonnegative $\theta_{1}, \ldots, \theta_{m}$ is called a conic combination (or a nonnegative linear combination) of $\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}$.

Definition 10. The conic hull of a set C is the set of all conic combinations of points in C, i.e., $\forall \mathbf{x}_{1}, \ldots, \mathbf{x}_{m} \in C$,

$$
\left\{\theta_{1} \mathbf{x}_{1}+\cdots+\theta_{m} \mathbf{x}_{m}: \theta_{i} \geq 0, i=1, \ldots, m\right\}
$$

which is also the smallest convex cone that contains C.
Notice that, a cone is not necessarily a convex set.

Figure 5: Conic hulls.

4 Operations that Preserve Convexity

Lemma 1. Let \mathcal{I} be an arbitrary index set. If the sets $S_{i} \subset \mathbb{R}^{n}, i \in \mathcal{I}$, are convex, then the set $S=\cap_{i \in \mathcal{I}} S_{i}$ is convex.

Proof. Let $\mathbf{x}_{1}, \mathbf{x}_{2} \in S$. Thus, $\forall i \in \mathcal{I}$, we have $\mathbf{x}_{1}, \mathbf{x}_{2} \in S_{i}$. As S_{i} is convex, the line segment between \mathbf{x}_{1} and \mathbf{x}_{2} also lies in S_{i}. Since this applies to all $S_{i}, i \in \mathcal{I}$, the line segment also lies in their intersection.

Definition 11. We define the product of a set S by a scalar c to get

$$
c S=\{c \mathbf{x}: \mathbf{x} \in S\} .
$$

The Minkowski sum of two sets is defined by:

$$
S_{1}+S_{2}=\left\{\mathbf{x}+\mathbf{y}: \mathbf{x} \in S_{1}, \mathbf{y} \in S_{2}\right\} .
$$

Lemma 2. Let S_{1} and S_{2} be convex sets in \mathbb{R}^{n} and let $a, b \in \mathbb{R}$. Then, the set $S=a S_{1}+b S_{2}$ is convex.

Proof. Let $\mathbf{z}_{1}, \mathbf{z}_{2} \in S$. The definition of the Minkowski sum implies that, there exist $\mathbf{x}_{i}, \mathbf{y}_{i} \in S_{i}$, $i=1,2$, such that

$$
\mathbf{z}_{1}=a \mathbf{x}_{1}+b \mathbf{x}_{2} \text { and } \mathbf{z}_{2}=a \mathbf{y}_{1}+b \mathbf{y}_{2}
$$

Then, $\forall \theta \in[0,1]$, we have

$$
\theta \mathbf{z}_{1}+(1-\theta) \mathbf{z}_{2}=a\left(\theta \mathbf{x}_{1}+(1-\theta) \mathbf{y}_{1}\right)+b\left(\theta \mathbf{x}_{2}+(1-\theta) \mathbf{y}_{2}\right) \in S
$$

Therefore, the set S is convex.
Lemma 3. Let $S \subseteq \mathbb{R}^{n}$ be convex and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be an affine function. Then, the image of S under f

$$
f(S)=\{f(\mathbf{x}): \mathbf{x} \in S\}
$$

is convex.
Proof. Let $\mathbf{y}_{1}, \mathbf{y}_{2} \in f(S)$, i.e., $\mathbf{y}_{1}=A \mathbf{x}_{1}+\mathbf{b}$ and $\mathbf{y}_{2}=A \mathbf{x}_{2}+\mathbf{b}$. Then,

$$
\theta \mathbf{y}_{1}+(1-\theta) \mathbf{y}_{2}=A\left(\theta \mathbf{x}_{1}+(1-\theta) \mathbf{x}_{2}\right)+\mathbf{b} \in f(S)
$$

Lemma 4 (Carathéodory's Lemma [2]). Suppose that $S \subset \mathbb{R}^{n}$. Then, every element of conv S is a convex combination of at most $n+1$ points of S.
Proof. Let $\mathbf{x}=\sum_{i=1}^{m} \theta_{i} \mathbf{x}_{i}$ be a convex combination of $m>n+1$ points of S. We shall show that m can be reduced by one. If $\theta_{i}=0$ for some i, then we are done. Otherwise, assume that all $\theta_{i}>0$. As $m>n+1$, we can find $\left\{\alpha_{i}\right\}_{i=1}^{m}$, not all equal 0 , such that

$$
\alpha_{1}\left[\begin{array}{c}
\mathbf{x}_{1} \\
1
\end{array}\right]+\alpha_{2}\left[\begin{array}{c}
\mathbf{x}_{2} \\
1
\end{array}\right]+\cdots+\alpha_{m}\left[\begin{array}{c}
\mathbf{x}_{m} \\
1
\end{array}\right]=0
$$

Let $\tau=\min \left\{\theta_{i} / \alpha_{i}: \alpha_{i}>0\right\}$ and $\theta_{i}^{\prime}=\theta_{i}-\tau \alpha_{i}, i=1,2, \ldots, m$. Still, we have $\sum_{i=1}^{m} \theta_{i}^{\prime}=1$ and $\sum_{i=1}^{m} \theta_{i}^{\prime} \mathbf{x}_{i}=\mathbf{x}$. The definition of τ leads to a fact that at least one $\theta_{i}^{\prime}=0$ and we can delete the $i^{t h}$ point. Repeating the above procedure, we can reduce the number of points to $n+1$.

References

[1] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.
[2] A. Ruszczyński. Nonlinear Optimization. Princeton University Press, 2006.

