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In machine learning area, we model many problems as optimization problems, i.e., finding the
maxima and minima of functions. We also model the input space as a linear space, i.e., we use
vectors to represent a data point and use matrices to represent a image. To this end, we need some
mathematical tools to analyze the properties of the functions and linear space. In this lecture, we
introduce a suite of powerful tools from mathematical analysis and linear algebra that are
widely used in machine learning. The major references of this lecture are [1, 2, 3, 4, 6].

1 Mathematical Analysis

We start by recalling some basic concept in mathematical analysis.

1.1 Supremum and Infimum

We begin from some basic definitions, which characterize the properties of real numbers.

Definition 1. A nonempty set S ⊆ R is bounded above if there exists a number u ∈ R such
that x ≤ u for all x ∈ S. The number u is called an upper bound for S.

Similarly, the set S is bounded below if there exists a number l ∈ R such that l ≤ x for all
x ∈ S. The number l is called a lower bound for S.

Definition 2. The real number u is the least upper bound for a nonempty set S ⊆ R if

1. u is an upper bound for S;

2. if u′ is any upper bound for S, then u ≤ u′.

The least upper bound is called the supremum of the set S, which is denoted by

u = supS.

If u ∈ S, then u is called the maximum point of S, i.e.,

u = maxS.

Question 1. For any nonempty subset of real numbers that is bounded above, can we always find
it a least upper bound?

The Completeness Axiom. Suppose that S is a nonempty subset of real numbers that is bounded
above. Then, the set S has a least upper bound.

Definition 3. The real number l is the greatest lower bound for a set S ⊆ R if

1. l is a lower bound for S;

2. if l′ is any lower bound for S, then l ≥ l′.

The greatest lower bound is called the infimum of the set S, which is denoted by

l = inf S.

If l ∈ S, then l is called the minimum point of S, i.e.,

l = minS.
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1.2 Norms and Inner Products

1.2.1 Norms

In a vector space, norm measures the “length” of a vector, and thus the “distance” between two
vectors. Once we have a distance function defined, we can discuss limits, followed by many impor-
tant concepts and tools in mathematical analysis, especially differentiation and integration (we can
of course discuss these concepts and tools without a distance function defined under a topological
space setting, which is out of the scope of this class).

Definition 4. A function f : Rn → R with dom f = Rn is called a norm if

• f is nonnegative: f(x) ≥ 0 for all x ∈ Rn;

• f is definite: f(x) = 0 only if x = 0;

• f is homogeneous: f(tx) = |t|f(x), for all x ∈ Rn and t ∈ R;

• f satisfies the triangle inequality: f(x+ y) ≤ f(x) + f(y), for all x,y ∈ Rn.

We often use the notation f(x) = ∥x∥ to denote the norm function.

Definition 5. The unit ball of a given norm ∥ ·∥ is the set of vectors with norm less than or equal
to one, that is,

B = {x ∈ Rn : ∥x∥ ≤ 1}.

Example 1. For x ∈ Rn, the commonly seen ℓp norm, p ≥ 1, is defined by

∥x∥p = (|x1|p + · · ·+ |xn|p)1/p.

The ℓ1-norm and ℓ2-norm (the Euclidean norm) are commonly-used regularization terms. Moreover,
the Chebyshev or ℓ∞-norm is given by

∥x∥∞ = max{|x1|, . . . , |xn|}.

Moreover, for any P ∈ Sn++—which is the set of n × n positive definite matrices—we define the
P-quadratic norm as

∥x∥P = (⟨x,x⟩P)1/2 = (⟨x,Px⟩)1/2 = (x⊤Px)1/2 = ∥P1/2x∥2.

Example 2. Norm can also be defined on an other space such as a matrix space. Let A ∈ Rm×n.

• The Frobenius norm is

∥A∥F =

√√√√ m∑
i=1

n∑
j=1

a2i,j .

• The matrix p-norms are

∥A∥p = max
∥x∥p=1

∥Ax∥p.
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Specifically,

∥A∥1 =max
j

∑
i

|aij |,

∥A∥2 =σmax(A) = (λmax(A
⊤A))1/2,

∥A∥∞ =max
i

∑
j

|aij |.

• The trace (nuclear/spectral) norm is

∥A∥∗ =
∑
i

σi(A).

1.2.2 Inner Products

Definition 6. A function f : Rn ×Rn → R with dom f = Rn ×Rn is called an inner product if

• f is nonnegative: f(x,x) ≥ 0 for all x ∈ Rn;

• f is definite: f(x,x) = 0 if and only if x = 0;

• f is symmetric: f(x,y) = f(y,x), for all x,y ∈ Rn;

• f is bilinear: f(ax+ by, z) = af(x, z) + bf(y, z) and f(x, ay + bz) = af(x,y) + bf(x, z), for
all x,y, z ∈ Rn and a, b ∈ R.

We often use the notation f(x,y) = ⟨x,y⟩ to denote the inner product function.

Example 3. Let x,y ∈ Rn. Then

⟨x,y⟩ = x⊤y = x1y1 + · · ·+ xnyn

is an inner product. For any positive definite matrix P, we can also define an inner product as

⟨x,y⟩P = ⟨x,Py⟩ = x⊤Py.

Example 4. Inner product can also be defined as above on a general linear space.

• Let A,B ∈ Rm×n. Then

⟨A,B⟩ = tr(A⊤B) =
∑
i,j

aijbij .

is an inner product.

• Let l2(R) = {x = (x1, x2, · · · , xn, · · · ), xi ∈ R,
∑∞

i=1 |xi|2 < ∞}. Then

⟨x,y⟩l2 =

∞∑
i=1

xiyi

is an inner product.
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• Let L2(R) = {f : R → R,
∫
R |f(x)|2dx < ∞}. Then

⟨f, g⟩L2 =

∫
R
f(x)g(x)dx

is an inner product. (Here we view two functions that equals almost everywhere as the same
in L2(R)).

Note that for any inner product, we can naturally define a norm, that is, a norm induced by
the inner product

∥x∥ =
√
⟨x,x⟩.

Question 2. Can any norm be induced by an inner product?

Proposition 1 (Cauchy-Schwarz Inequality). For all x,y ∈ Rn, there holds

|⟨x,y⟩| ≤ ∥x∥∥y∥.

The equality holds when and only when x and y are linearly dependent, i.e., λx+µy = 0 for some
λ, µ ∈ R.

Definition 7. For any non-zero vectors x,y ∈ Rn, the included angle is defined as

Θ(x,y) = arccos
⟨x,y⟩
∥x∥∥y∥

.

Definition 8. Two vectors x and y are orthogonal if ⟨x,y⟩ = 0.

1.3 Basic Topology of Rn

1.3.1 Open Sets

Definition 9. Given ϵ > 0, the ϵ-neighborhood of a point x ∈ Rn is

Nϵ(x) = {y : y ∈ Rn, ∥y − x∥ < ϵ}.

The number ϵ is called the radius of Nϵ(x).

Definition 10. An element x ∈ S ⊆ Rn is called an interior point of S if there exists an ϵ > 0
such that Nϵ(x) ⊆ S.

Definition 11. The set of interior points of S is called the interior of S, which is denoted by S◦

or int S.

Definition 12. A set O ⊆ Rn is open if every point in O is an interior point of O, i.e., O = int O.

Question 3.

3.1. Is the ϵ-neighborhood an open set?

3.2. Is (0, 1) ⊂ R an open set?

3.3. Is (0, 1) ⊂ R2 an open set?
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1.3.2 Closed Sets

Another type of sets that is closely related to the open sets is the so-called closed sets. We can
easily define the closed sets by using open sets.

Definition 13. A set F ⊆ Rn is closed if its complement set, that is,

Rn \ F = {x : x ∈ Rn,x /∈ F},

is open.

Definition 13 implies that, if F ⊆ is closed in Rn, we can find for each x /∈ F a neighborhood
Nϵ(x) ⊂ Rn \F , where ϵ may depend on x. Another useful approach to characterize the topological
properties of closed sets is by convergent sequences.

Definition 14. A sequence (xk) of vectors in Rn is said to converge to x ∈ Rn if for any ϵ > 0,
there exists a positive integer N such that

∥xk − x∥2 < ϵ, ∀ k ≥ N.

Symbolically, xk → x or limk→∞ xk = x.

Theorem 1. If the limit of a sequence exists, it must be unique.

Definition 15. A vector x ∈ Rn is a limit (cluster/accumulation) point of a set S ⊆ Rn if
there exists a sequence (xk) ⊆ S and xk ̸= x for k = 1, 2, . . . such that xk → x.

Definition 16. A set F ⊆ Rn is closed if it contains all of its limit point.

Question 4. Let S′ be the set of all limit points of S. How to characterize the points left in S
after we remove all the points in S′? In other words, what can we say about the points in S \ S′?

To Question 4, we give an equivalent definition of limit point by neighborhood.

Definition 17. A vector x ∈ Rn is a limit (cluster/accumulation) point of a set S ⊆ Rn if
every neighborhood of x contains a point x′ ̸= x such that x′ ∈ S.

In view of Definition 17, we can easily characterize the points in S \ S′, which is known as the
isolated points.

Definition 18. A vector x ∈ S ⊆ Rn is an isolated point of S if it is not a limit point of S, that
is, there exists a neighbor of x that contains no other points in S other than x.

Remark 1. Notice that, for a nonempty set S ⊆ Rn, its limit points may not belong to S, while
its isolated points must be one of the elements in S. However, either S′ or S \ S′ can be empty
(when?), but not both under the nonempty assumption of S.

When a set S does not contain all of its limit points, we may say that S is not closed to the
limit operations of the sequences in S. This may lead to practical difficulties. For example, what is
the length of the diagonal of the unit square if you only know rational numbers? Thus, expanding
the set such that it contains all its limit points becomes desirable.

Definition 19. The closure of the set S, denoted by cl S or S̄, is the set S ∪ S′.

In view of Definitions 16 and 19, we immediately have the result as follows.
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Theorem 2. Let S ⊆ Rn.

1. The set S̄ is closed.

2. The set S is closed if and only if S = S̄.

Question 5.

1. Is (0, 1] closed in R?

2. Is (0, 1] closed in (0,∞)?

Remark 2. When we discuss the openness or closedness of a given set S, we always refers to
another set Ω that includes S. Specifically, even for the same set S, it can be open with respect to
a set Ω with S ⊆ Ω, and it can also be closed with respect to another set Ω′ with S ⊆ Ω′ as well
(please see Questions 3 and 5). Thus, a rigorious way to claim that “the set S is open or closed”
is to say that “the set S is open or closed in Ω (with S ⊆ Ω)”.

Question 6.

1. Can you find a set that is open-and-closed?

2. Can you find a set that is neither open nor closed?

1.3.3 The Boundary of A Set

Enlightened by the definition of open sets introduced in Section 1.3.1, we can characterize the inside
of a set S ⊆ Rn by its interior. This naturally raises two questions.

Question 7.

1. How to characterize the outside of a set S ⊆ Rn?

2. How to characterize the boundary of a set S ⊆ Rn?

As long as we know how to characterize the inside of a set, we can easily characterize its outside
(how?). Thus, given a set S, the points left by removing the inside and outside of S naturally
belong to the boundary of S. We formalize this idea by the definition as follows.

Definition 20. A point x is a boundary point of a set S ⊆ Rn if every ϵ-neighborhood of x
contains both points belonging to S and points not belonging to S.

We can further characterize the boundary points by the results as follows.

Theorem 3. Let ∂S (also denoted by bd S) be the boundary of a set S ⊆ Rn. Then,

∂S = S̄ \ S◦.

Question 8.

1. Can we claim that bd S ⊆ S?

2. Is that possible bd S = S?
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1.3.4 Compact Sets

Definition 21. A set S ⊆ Rn is bounded if there exists a scalar M such that

∥x∥2 ≤ M, ∀x ∈ S.

Definition 22. A set S ⊆ Rn is compact if every sequence in S has a subsequence that converges
to a point in S.

Theorem 4. A set S ⊆ Rn is compact if and only if it is closed and bounded.

Remark 3. Different from the “openness” and “closedness”, the property of “compactness” is
intrinsic [5]—that is, if A ⊆ B ⊆ C, then A is compact in B if and only if A is compact in C, while
the property of being closed (or open) is not intrinsic (see Question 5).

1.4 Continuous Functions

Definition 23. Let f : S → R where S ⊆ Rn. We say f is continuous at x0 ∈ S if for any ϵ > 0,
there exists a δ > 0 such that

|f(x)− f(x0)| < ϵ,

for all x ∈ S and ∥x − x0∥ < δ. A function is continuous if it is continuous at every point in its
domain.

Question 9. Let f : N → R, where N is the set of all integers. Is f a continous function?

A handy property of continuous functions f is that, for any sequence (xk) ⊂ dom f that
converges to x ∈ dom f , we have

lim
k→∞

f(xk) = f

(
lim
k→∞

xk

)
= f(x).

Proposition 2 (Bolzano-Weierstrass Theorem). Every bounded sequence in Rn has a conver-
gent subsequence.

Theorem 5 (Extreme Value Theorem). Let C be a compact subset of Rn and f : C → R be
continuous. Then, there exist a, b ∈ C such that

f(a) ≤ f(x) ≤ f(b), ∀x ∈ C.

In other words, f attains maximum and minimum values in C.

Theorem 5 is one of the most important results in calculus, as it provides a method to show
the existence of the optimum of optimization problems.

Question 10.
Which property will be preserved by a continuous function, openness, closedness, or compact-

ness? Specifically, let S ⊂ Rn, f : Rn → R be a continuous function, and

I = {y : y ∈ R,∃x ∈ S, such that f(x) = y}.

If S is open/closed/compact, will I be open/closed/compact?

If you can show that the compactness is preserved by continuous functions, you can immediately
obtain the result in Theorem 5.
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2 Linear Algebra

Linear algebra is central to almost all areas of mathematics and is also powerful in most sciences
and fields of engineering, including machine learning. In this section, we review some of the basics
of linear algebra.

2.1 Linear Space

We start with linear space, which is one of the most important concepts in linear algebra. A critical
property of linear spaces is that each vector can be linearly represented by a finite number of other
vectors. To understand this statement, we need to answer the following questions.

1. What is a linear space?

2. What is the linear combination?

3. What is the basis of a linear space?

4. Do all linear spaces have a basis? Are their bases always finite or countable?

We can find the answers to the first three questions in this lecture. However, to answer the last
question, we need Axiom of Choice or Zorn’s Lemma, which are beyond our scope. In this course,
we admit that every linear space has a set of basis and know that some linear spaces have non-
countable basis.

Definition 24. Let V be a nonempty set and F be a number field (e.g., Q,R, and C ). We say
that V is the linear space (or vector space) over F if the following conditions hold.

1. We have defined two binary operations in V.

(a) The first operation, called vector addition or simply addition, assigns to any two
vectors u and v in V a third vector in V which is commonly written as u+v, and called
the sum of these two vectors.

(b) The second operation, called scalar multiplication, assigns to any scalar a ∈ F and
any vector v ∈ V another vector in V, which is denoted av.

2. The addition and the scalar multiplication defined in V satisfy the following eight axioms.

(a) The addition is commutative, i.e., u+ v = v + u, ∀u,v ∈ V.
(b) The addition is associative, i.e., (u+ v) +w = u+ (v +w),∀u,v,w ∈ V.
(c) There exists a zero vector in V, i.e., there exists θ ∈ V such that θ + v = v + θ = v,

∀v ∈ V. The zero vector is also denoted by 0.

(d) There exists an additive inverse for each vector in V, i.e., for every v ∈ V, there exists
a vector v′ ∈ V such that v + v′ = v′ + v = 0. We also denote v′ by −v.

(e) The scalar multiplication is compatible with field multiplication, i.e., (ab)v = a(bv),
∀v ∈ V, a, b ∈ F .

(f) The multiplicative identity in F is the identity element of scalar multiplication,
i.e., 1v = v, ∀v ∈ V.

(g) The scalar multiplication is distributive with respect to vector addition, i.e., a(u+v) =
au+ av, ∀a ∈ F,u,v ∈ V.
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(h) The scalar multiplication is distributive with respect to field addition, i.e., (a+ b)v =
av + bv,∀a, b ∈ F,v ∈ V.

Remark 4. When we talk about a linear space, compared to what the elements in it (i.e., vectors)
are, we care more about the operations (i.e., the vector addition and scalar multiplication) defined
on it and its linear structure.

Example 5. 1. R[x] is the linear space consisting of all the polynomials with real coefficients.

2. C[a, b] is the linear space consisting of all the continuous functions on [a, b].

Definition 25. Let V be a linear space over F and S be a subset of V. For any finite subset
S1 = {v1, . . . ,vk} ⊂ S and a1, . . . , ak ∈ F , we call a1v1 + . . .+ akvk a linear combination of S.
If a vector u ∈ V is a linear combination of S, we say that u can be linearly represented by S.
The set of all linear combinations of S is denoted V (S).

Note that for every subset S ⊂ V, V (S) is a subspace of V. It is easy to show that any subspace
W that contains S also contains V (S). Hence, V (S) is the smallest subspace of V containing S.

Definition 26. We say that S spans or generates V (S), V (S) is the linear span of S, and S is
a spanning set or a generating set of V (S).

Definition 27. Let V be a linear space over F and S be a subset of V. If there exists some difnite
subset S1 = {v1, . . . ,vk} ⊂ S and scalars a1, . . . , ak that are not all 0 such that

a1v1 + . . .+ akvk = 0,

we say that S is linearly dependent. Otherwise, S is linearly independent.

Remark 5. Please note the geometric meaning of linear dependencies.

Theorem 6. Let V be a linear space over F and S be a subset of V, then S is linearly dependent
if and only if there exists some vector v ∈ S, which is the linear combination of other vectors.

Definition 28. Let V be a linear space over F .

1. If there exist n vectors in V that are linearly independent and every n + 1 vectors in V are
linearly dependent, we say that the dimension of V is n, denoted dimV = n.

2. If there exists a set of vectors M = {v1, . . . ,vn} such that every vector v ∈ V is the linear
combination of M , i.e.,

v = a1v1 + . . .+ anvn,

and the coefficients are uniquely determined by v, we say that M is a basis of V. The ordered
array (a1, . . . , an) is called the coordinate of v under the basis M .

2.2 Range and Nullspace

We define the range and the nullsapce of A ∈ Rm×n as follows.

Definition 29. Let A ∈ Rm×n. The range of A, denoted R(A), is the set of all vectors in Rm

that can be written as linear combinations of the columns of A, i.e.,

R(A) = {Ax ∈ Rm | x ∈ Rn} .

The nullsapce (or kernel) of A, denoted N (A), is the set of all vectors x mapped into 0 by A,
i.e.,

N (A) = {x ∈ Rn | Ax = 0} .
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Theorem 7. Let A ∈ Rm×n.

1. R(A) is a subspace of Rm and N (A) is a subspace of Rn.

2. The dimension of R(A) is the rank of A, i.e.,

dimR(A) = rankA.

3. The dimension of N (A) is that of the solution space of Ax = 0, i.e.,

dimN (A) = dimVA.

In fact, we have N (A) = VA.

4. The sum of dimensions of R(A) and N (A) is the dimension of Rn, i.e.,

dimR(A) + dimN (A) = n,

which is equivalent to what we know about A :

rankA+ dimVA = n.

Question 11. How many ways can you think of to explain the rank of a matrix?

2.3 Symmetric Eigenvalue Decomposition

Symmetric matrix is import in machine learning with some useful properties.

Theorem 8. Let A ∈ Sn, i.e., A is a real symmetric n× n matrix. Then A can be factored as

A = QΛQ⊤,

where Q ∈ Rn×n is orthogonal and Λ = diag (λ1, . . . , λn) ∈ Rn×n. Such a decomposition is called
the symmetric eigenvalue decomposition or spectral decomposition of A.

Suppose that Q = (q1, . . . ,qn), then we have

A (q1, . . . ,qn) = (q1, . . . ,qn)

 λ1

. . .

λn

 ,

which leads to Aqi = λiqi, 1 ≤ i ≤ n. Note that Q⊤Q = I, which means that q⊤
i qj = 0,

1 ≤ i ̸= j ≤ n. Hence {q1, . . . ,qn} is an orthonormal set of eigenvectors of A.

2.3.1 Definiteness and Matrix Inequalities

First we have a simple observation. Suppose A ∈ Sn, we let λmax(A) and λmin(A) be the maximum
and minimum eigenvalue of A, respectively. Then we have

λmax(A) = sup
x∈Rn,x ̸=0

x⊤Ax

x⊤x
, λmin(A) = inf

x∈Rn,x ̸=0

x⊤Ax

x⊤x
.
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To see this, let A = Q⊤ΛQ be the orthogonal decomposition of A, where Q is an orthogonal
matrix and Λ = diag(λ1, · · · , λn) is a diagonal matrix whose diagonal entries are the eigenvalues
of A. Then we have

x⊤Ax = x⊤Q⊤ΛQx ≤ λmax(A)x⊤Q⊤Qx = λmax(A)x⊤x.

The equality holds if and only if x is an eigenvector of λmax(A). The equation of λmin(A) holds
similarly, and we leave it for an exercise.

In the following context, we are going to investigate how the sign of λmax(A) and λmin(A)
influence the properties of A. First, we introduce the concept of definiteness.

Definition 30. Let A ∈ Sn.

1. We say A is positive definite or A > 0, if x⊤Ax > 0 for all x ∈ Rn, x ̸= 0. We denote the
set of all positive definite matrices by Sn

++.

2. We say A is positive semidefinite or A ≥ 0, if x⊤Ax ≥ 0 for all x ∈ Rn, x ̸= 0. We denote
the set of all positive definite matrices by Sn

+.

3. We say A is negative definite or A < 0, if x⊤Ax < 0 for all x ∈ Rn, x ̸= 0.

4. We say A is negative semidefinite or A ≤ 0, if x⊤Ax ≤ 0 for all x ∈ Rn, x ̸= 0.

Notice that by definition, A is positive definite is equivalent to λmin(A) > 0; A is positive
semidefinite is equivalent to λmin(A) ≥ 0. For negative and negative semidefinite cases, we also
have similar results. Another observation is that A < 0 is equivalent to −A > 0, A ≤ 0 is
equivalent to −A ≥ 0.

2.4 Singular Value Decomposition (SVD)

Singular value decomposition separates any matrix into simple pieces and is widely used in
numerical linear algebra field.

Theorem 9. Suppose A ∈ Rm×n with rank(A) = r, then A can be factorized as

A = UΣV⊤.

Here U ∈ Rm×m and V ∈ Rn×n are both orthogonal matrices, Σ = diag(σ1, · · · , σr, 0, · · · , 0) with
σ1 ≥ σ2 ≥ · · ·σr > 0.

We call σi (i = 1, · · · , r) the singular values of A, the columns of U left singular vectors and
the columns of V right singular vectors. Then we have

A =
r∑

i=1

σiuiv
⊤
i ,

where ui is the ith column of U (i = 1, · · · ,m) and vj is the jth column of V (j = 1, · · · , n).

Further, one can show that the set of singular values of A is equal to the set of the arithmetic
square root of non-zero eigenvalues of A⊤A or AA⊤.

We denote the largest singular value of A by σmax(A). Then we can prove that

σmax(A) = sup
x∈Rm,y∈Rn,x,y ̸=0

x⊤Ay

∥x∥2∥y∥2
= sup

y∈Rn,y ̸=0

∥Ay∥2
∥y∥2

= ∥A∥2.
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