Introduction to Machine Learning

Fall 2023
University of Science and Technology of China
Lecturer: Jie Wang
Homework 7
Posted: December 26, 2023
Due: January 4, 2024

Notice, to get the full credits, please present your solutions step by step.

Exercise 1: Singular Value Decomposition

Let $\mathbf{A} \in \mathbb{R}^{m \times n}, \operatorname{rank} \mathbf{A}=r$. The SVD of \mathbf{A} is $\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$, where $\mathbf{U} \in \mathbb{R}^{m \times m}, \boldsymbol{\Sigma} \in$ $\mathbb{R}^{m \times n}, \mathbf{V} \in \mathbb{R}^{n \times n}$, and we sort the diagonal entries of $\boldsymbol{\Sigma}$ in the descending order $\sigma_{1} \geq \sigma_{2} \geq$ $\ldots \geq \sigma_{r}>0$. Denote

$$
\begin{aligned}
\mathbf{U}_{\mathbf{1}} & =\left(\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{r}\right), \mathbf{U}_{\mathbf{2}}=\left(\mathbf{u}_{r+1}, \ldots, \mathbf{u}_{m}\right), \\
\mathbf{V}_{\mathbf{1}} & =\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}\right), \mathbf{V}_{\mathbf{2}}=\left(\mathbf{v}_{r+1}, \ldots, \mathbf{v}_{n}\right) .
\end{aligned}
$$

The column space of \mathbf{A} is the set

$$
\mathcal{C}(\mathbf{A})=\left\{\mathbf{y} \in \mathbb{R}^{m}: \mathbf{y}=\mathbf{A} \mathbf{x}, \mathbf{x} \in \mathbb{R}^{n}\right\} .
$$

The null space of \mathbf{A} is the set

$$
\mathcal{N}(\mathbf{A})=\left\{\mathbf{y} \in \mathbb{R}^{n}: \mathbf{A y}=\mathbf{0}\right\} .
$$

1. Show that
(a) $P_{\mathcal{C}(\mathbf{A})}(\mathbf{x})=\mathbf{U}_{\mathbf{1}} \mathbf{U}_{\mathbf{1}}{ }^{\top} \mathbf{x}$;
(b) $P_{\mathcal{N}(\mathbf{A})}(\mathbf{x})=\mathbf{V}_{\mathbf{2}} \mathbf{V}_{\mathbf{2}}{ }^{\top} \mathbf{x}$;
(c) $P_{\mathcal{C}\left(\mathbf{A}^{\top}\right)}(\mathbf{x})=\mathbf{V}_{\mathbf{1}} \mathbf{V}_{\mathbf{1}}{ }^{\top} \mathbf{x}$;
(d) $P_{\mathcal{N}\left(\mathbf{A}^{\top}\right)}(\mathbf{x})=\mathbf{U}_{\mathbf{2}} \mathbf{U}_{\mathbf{2}}{ }^{\top} \mathbf{x}$.
2. The Frobenius norm of \mathbf{A} is

$$
\|\mathbf{A}\|_{F}=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i, j}^{2}} .
$$

(a) Show that $\|\mathbf{A}\|_{F}^{2}=\operatorname{tr}\left(\mathbf{A}^{\top} \mathbf{A}\right)$.
(b) Let $\mathbf{B} \in \mathbb{R}^{m \times n}$. Suppose that $\mathcal{C}(\mathbf{A}) \perp \mathcal{C}(\mathbf{B})$, that is,

$$
\langle\mathbf{a}, \mathbf{b}\rangle=0, \forall \mathbf{a} \in \mathcal{C}(\mathbf{A}), \mathbf{b} \in \mathcal{C}(\mathbf{B}) .
$$

Show that

$$
\|\mathbf{A}+\mathbf{B}\|_{F}^{2}=\|\mathbf{A}\|_{F}^{2}+\|\mathbf{B}\|_{F}^{2} .
$$

Solution:

Homework 7

Exercise 2: Principle Component Analysis

Suppose that we have a set of data instances $\left\{\mathbf{x}_{i}\right\}_{i=1}^{n} \subset \mathbb{R}^{d}$. Let $\widetilde{\mathbf{X}} \in \mathbb{R}^{d \times n}$ be the matrix whose $i^{\text {th }}$ column is $\mathbf{x}_{i}-\overline{\mathbf{x}}$, where $\overline{\mathbf{x}}$ is the sample mean, and \mathbf{S} be the sample variance matrix.

1. For $\mathbf{G} \in \mathbb{R}^{d \times K}$, let us define

$$
\begin{equation*}
f(\mathbf{G})=\operatorname{tr}\left(\mathbf{G}^{\top} \mathbf{S G}\right) . \tag{1}
\end{equation*}
$$

Show that $f(\mathbf{G Q})=f(\mathbf{G})$ for any orthogonal matrix $\mathbf{Q} \in \mathbb{R}^{K \times K}$.
2. Please find \mathbf{g}_{1} defined as follows by the Lagrange multiplier method.

$$
\begin{equation*}
\mathbf{g}_{1}:=\underset{\mathbf{g} \in \mathbb{R}^{d}}{\operatorname{argmax}}\left\{f(\mathbf{g}):\|\mathbf{g}\|_{2}=1\right\}, \tag{2}
\end{equation*}
$$

where f is defined by (1). Notice that, the vector \mathbf{g}_{1} is the first principal component vector of the data.
3. Please find \mathbf{g}_{2} defined as follows by the Lagrange multiplier method.

$$
\mathbf{g}_{2}:=\underset{\mathbf{g} \in \mathbb{R}^{d}}{\operatorname{argmax}}\left\{f(\mathbf{g}):\|\mathbf{g}\|_{2}=1,\left\langle\mathbf{g}, \mathbf{g}_{1}\right\rangle=0\right\},
$$

where \mathbf{g}_{1} is given by (2). Similar to \mathbf{g}_{1}, the vector \mathbf{g}_{2} is the second principal component vector of the data.
4. Please derive the first K principal component vectors by repeating the above process.
5. What is $f\left(\mathbf{g}_{k}\right), k=1, \ldots, K$? What about their meaning?

Solution:

Homework 7

Exercise 3: Properties of Transition Matrix

A transition matrix (also called a stochastic matrix, probability matrix) is a square matrix used to describe the transitions of a Markov chain. Each of its entries is a nonnegative real number representing a probability. A right (left) transition matrix is a square matrix with each row (column) summing to one. Without loss of generality, we study the right transition matrix in this exercise. Suppose that $\mathbf{T} \in \mathbb{R}^{n \times n}$ is a right transition matrix.

1. Show that 1 is an eigenvalue of \mathbf{T}.
2. Let λ be an eigenvalue of \mathbf{T}. Show that $|\lambda| \leq 1$.
3. Show that $\mathbf{I}-\gamma \mathbf{T}$ is invertible, where $\mathbf{I} \in \mathbb{R}^{n \times n}$ is the identity matrix and $\gamma \in(0,1)$.

Solution:

Homework 7

Exercise 4: Grid World with a Given Policy

Consider the grid world shown in Figure 1. The finite state space is $\mathcal{S}=\left\{s_{i}: i=\right.$ $1,2, \ldots, 11\}$ and the finite action space is $\mathcal{A}=\{$ up, down, left, right $\}$.
State transition probabilities: After the agent picks and performs a certain action, there are four possibilities for the next state: the destination state, the current state, the states to the right and left of the current state. If the states are reachable, the corresponding probabilities are $0.7,0.1,0.05$, and 0.15 , respectively; otherwise, the agent stays where it is. Since the game will terminate if the agent arrives at s_{10} (loss) or s_{11} (win), you can assume that $\mathbf{P}\left(S_{t+1}=s_{10} \mid S_{t}=s_{10}, A_{t}=a\right)=1, \mathbf{P}\left(S_{t+1}=s_{11} \mid S_{t}=s_{11}, A_{t}=a\right)=1 \forall a \in \mathcal{A}$.
Reward: After the agent picks and performs a certain action at its current state, it receives rewards of $100,-100$, and 0 , if it arrives at states s_{11}, s_{10}, and all the other states, respectively.
Policy: In Figure 1, the arrows show the policy $\pi: \mathcal{S} \rightarrow \mathcal{A}$ for the agent. The random variable S_{t} is the state at time t under the policy π.

1. Find the matrix $\mathbf{M} \in \mathbb{R}^{11 \times 11}$ with $\mathbf{M}_{i, j}=\mathbf{P}\left(S_{t+1}=s_{j} \mid S_{t}=s_{i}, A_{t}=\pi\left(s_{i}\right)\right)$, i.e., the conditional probability of the agent moving from s_{i} to s_{j}.
2. Find the vector $\mathbf{R} \in \mathbb{R}^{11}$ with $\mathbf{R}_{j}=\mathbb{E}\left[r\left(s_{j}, \pi\left(s_{j}\right)\right]\right.$, i.e., the expected reward after performing action $\pi\left(s_{j}\right)$ at state s_{j}, where the policy is given in Figure 1.
3. Suppose that the initial state distribution is uniform distribution, that is $\mathbf{P}\left(S_{0}=\right.$ $\left.s_{i}\right)=1 / 11, i=1, \ldots, 11$. Please find the distributions $\mathbf{P}\left(S_{1}\right)$ and $\mathbf{P}\left(S_{2}\right)$ by following the policy π.
4. Find the value function corresponding to the policy π, where the discount factor $\gamma=0.9$.

Figure 1: Illustration of a grid world with a policy.

