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Notice, to get the full credits, please show your solutions step by step.

Exercise 1: SVM for Linearly Separable Cases

Given the training set D = {(xi, yi)}ni=1, where xi ∈ Rd and yi ∈ {−1, 1}. Let

D+ = {(xi, yi) ∈ D : yi = 1}, D− = {(xi, yi) ∈ D : yi = −1}.

Assume that D+ and D− are nonempty and the training set D is linearly separable. We
have shown in Lecture 13 that SVM can be written as

min
w,b

1

2
∥w∥2, (1)

s.t. min
i

yi(⟨w,xi⟩+ b) = 1.

Moreover, we further transform Problem (1) to

min
w,b

1

2
∥w∥2, (2)

s.t. yi(⟨w,xi⟩+ b) ≥ 1, i = 1, . . . , n.

We denote the feasible set of Problem (2) by

F = {(w, b) : yi(⟨w,xi⟩+ b) ≥ 1, i = 1, . . . , n}.

1. The Euclidean distance between a linear classifier f(x;w, b) = ⟨w,x⟩+ b and a point
z is

d(z, f) = min
x

{∥z− x∥ : f(x;w, b) = 0}.

Please find the closed form of d(z, f).

2. Show that F is nonempty.

3. Please show that Problem (2) admits an optimal solution.

4. Please show that Problems (1) and (2) share the same set of optimal solutions.

5. Let (w∗, b∗) be the optimal solution to Problem (2). Please show that

(a) If the training set D is linearly separable, we have w∗ ̸= 0;

(b)If all samples in training set D are positive or negative, then w∗ can be 0.
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6. Let (w∗, b∗) be the optimal solution to Problem (2). Show that there exist at least one
positive sample and one negative sample, respectively, such that the corresponding
equality holds. In other words, there exist i, j ∈ {1, 2, . . . , n} such that

1 = yi =⟨w∗,xi⟩+ b∗,

−1 = yj =⟨w∗,xj⟩+ b∗.

7. Show that the optimal solution to Problem (2) is unique and there is at least one of
the constraints holds as an equality at the optimum.

8. Can we remove the inequalities that hold strictly at the optimum to Problem (2)
without affecting the solution? Please justify your claim rigorously.

Solution: ■
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Exercise 2: Discussions on Geometric Multiplier and Duality Gap

Consider the primal problem

min
x

f(x) (3)

s.t. gi(x) ≤ 0, i = 1, · · · ,m,

hi(x) = 0, i = 1, · · · , p,
x ∈ X.

Let

S = {(g(x),h(x), f(x)) : x ∈ X} ⊂ Rm+p+1. (4)

Are the following claims on the geometric multiplier and the duality gap for the primal
problem correct? Justify the claims rigorously if they are correct. Otherwise please give a
counterexample for each.

1. The geometric multiplier for the primal problem (3) always exists.

2. If the geometric multiplier exists, then it is unique.

3. If the geometric multiplier exists, then the duality gap is zero.

4. If the duality gap is zero, there exists at least one geometric multiplier.

5. Let (λ∗, µ∗) be a geometric multiplier. Then, the problem argminx∈X L(x, λ∗, µ∗)
always admits at least one solution, where L(x, λ, µ) is the Lagrangian for (3).

6. If (λ∗, µ∗) is a geometric multiplier and the problem argminx∈X L(x, λ∗, µ∗) admits
a solution x∗, then x∗ is feasible.

7. Let (λ∗, µ∗) be a geometric multiplier. Then, x∗ is a global minimum of the primal
problem if and only if x∗ is feasible and x∗ ∈ argminx∈X L(x, λ∗, µ∗).
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Exercise 3: The Dual Problem of SVM

Suppose that the training set is D = {(xi, yi)}ni=1, where xi ∈ Rd and yi ∈ {−1, 1}. Let

D+ = {(xi, yi) ∈ D : yi = 1}, D− = {(xi, yi) ∈ D : yi = −1}.

Assume that D+ and D− are nonempty. The soft margin SVM takes the form of

min
w,b,ξ

1

2
∥w∥22 + C

n∑
i=1

ξi, (5)

s.t. yi(⟨w,xi⟩+ b) ≥ 1− ξi, i = 1, . . . , n,

ξi ≥ 0, i = 1, . . . , n,

The corresponding dual problem is

min
α

1

2

n∑
i=1

n∑
j=1

αiαjyiyj⟨xi,xj⟩ −
n∑

i=1

αi (6)

s.t.

n∑
i=1

αiyi = 0,

αi ∈ [0, C], i = 1, . . . , n.

1. Show that the problems (5) and (6) always admit optimal solutions.

2. Let (w∗, b∗) be the solution to (5) and α∗ be the corresponding solution to (6).

(a) When does α∗
i equals to C, i = 1, . . . , n? Please give an example and find the

corresponding solutions.

(b) When dose w∗ equal to 0? Please give an example and find the corresponding
solutions.

Notice that, you need to find all the primal and dual optimal solutions if they are not
unique.

3. For a linearly separable data sample, shall we arrive at the same separating hyperplane
by solving the problems in (2) and (6), respectively?

Solution: ■
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Exercise 4: An Example of the Soft Margin SVM

Recall that the soft margin SVM takes the form of

min
w,b,ξ

1

2
∥w∥2 + C

n∑
i=1

ξi, (7)

s.t. yi(⟨w,xi⟩+ b) ≥ 1− ξi, i = 1, . . . , n,

ξi ≥ 0, i = 1, . . . , n,

where C > 0.

1. The function of the slack variables used in the optimization problem for soft margin
hyperplanes takes the form

∑n
i=1 ξi. We could also use

∑n
i=1 ξ

p
i , where p > 1. The

soft margin SVM becomes

min
w,b,ξ

1

2
∥w∥22 + C

n∑
i=1

ξpi , (8)

s.t. yi(⟨w,xi⟩+ b) ≥ 1− ξi, i = 1, . . . , n,

ξi ≥ 0, i = 1, . . . , n.

Please find the dual problem of (8) and the corresponding optimal conditions.

As shown in Figure 1, the training set is D = {(xi, yi)}11i=1, where xi ∈ R2 and yi ∈
{+1,−1}. Suppose that we use the soft margin SVM to classify the data points and get
the optimal parameters w∗, b∗, and ξ∗ by solving the problem (8).

2. Please write down the equations of the separating hyperplane (H0) and the marginal
hyperplanes (H1 and H2) in terms of w∗ and b∗.

3. Please find the support vectors and the non-support vectors.

4. (Optional) Please find the values (or ranges) of the optimal slack variables ξ∗i for
i = 1, 2, . . . , 11. (Hint: The possible answers are ξ∗i = 0, 0 < ξ∗i < 1, ξ∗i = 1, and
ξ∗i > 1). How do the slack variables change when the parameter C increases and
decreases?
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Figure 1: Classifying the data points using the soft margin SVM. H0 is the separating
hyperplane. H1 and H2 are the marginal hyperplanes.

Solution: ■
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Exercise 5: Neural Networks

1. The softmax function f : Rn → Rn is defined by:

fi(x) =
exp(xi)∑n

k=1 exp(xk)
, i = 1, . . . , n,

where xi is the i
th component of x ∈ Rn. The function f(x) = (f1(x), f2(x), . . . , fn(x))

⊤

converts each input x into a probability (stochastic) vector in which all entries are
nonnegative and add up to one.

(a) Please find the gradient and Jacobian matrix of f(x), i.e., ∇f(x) and Jf(x).

(b) Show that f(x) = f(x − c1), where c = max{x1, x2, ..., xn} and 1 is a vector all
of whose components are one. When do we need this transformation?

2. Consider the neural network with a single hidden layer in Figure 2. Let x ∈ R3 be an
input vector, and y be its corresponding output of the network. f implies that there
exist four units in the hidden layer, each of which is followed by a sigmoid activation
function σ, converting its input z to output a. Suppose that the ground truth label
vector of x is [0, 0, 1]⊤ and we use the cross entropy introduced in Lecture 15 as the
loss function.

(a) Please find the update formula for the jth weight of the ith hidden unit , i.e., w1
ij

where i ∈ {1, 2, 3} and j ∈ {1, 2, 3, 4}.
(b) Can we initialize all the parameters, i.e., weights and bias, of the neural network

to zero? Please state you conclusion.

3. Consider a convolutional neural network as shown in Table 1.

(a) The convolutional layer parameters are denoted as “conv⟨filter size⟩-⟨number of
filters⟩”.

(b) The fully connected layer parameters are denoted as “FC⟨number of neurons⟩”.
(c) The window size of pooling layers is 2.

(d) The stride of convolutinal layers is 1.

(e) The stride of pooling layers is 2.

(f) You may want to use padding in both convolutional and pooling layers if neces-
sary.

(g) For convenience, we assume that there is no activation function and bias.

Suppose that the input is a 210× 160 RGB image. Please derive the size of all
feature maps and the number of parameters.

conv3-32 conv5-32 max pool conv3-64 conv5-64 max pool FC-128 FC-10

Table 1: The architecture of convolutional neural network
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Figure 2: A neural network with a single hidden layer.

Solution:
■
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Exercise 6: Exercises of Dual Problems

Consider the optimization problem

min
x

f(x) = x2 + 1

s.t. g(x) = (x− 2)(x− 4) ≤ 0,

x ∈ R.

1. Give the feasible set, the optimal value, and the optimal solution x⋆.

2. Please write the dual problem of the primal problem, and verify that it is a concave
maximization problem.

3. Please give the KKT conditions.

4. Please find the dual optimal value and dual optimal solution λ⋆. Does strong duality
hold?

5. Consider the set S = {(g(x), f(x))|x ∈ R}, please verify that the norm vector (λ⋆, 1)
supports S at (g(x⋆), f(x⋆)).

Solution: ■
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Exercise 7: Some Network Layers, Linear Transformation and Gradient (Op-
tional)

In this exercise, we explore several kinds of network layers in the view of linear transforma-
tion.

1. 1-dimensional convolutional layer. Suppose we have an input x ∈ Rn and filter
w ∈ Rk (n > k). We can compute the convolution of x ∗w as follows:

• Take the convolutional filter w and align it with the beginning of x. Take the
dot product of w and the x[0 : k − 1] and assign that as the first entry of the
output.

• Suppose we have stride s. Shift the filter down by s indices, and now take the
dot product of w and x[s : k−1+s] and assign to the next entry of your output.

• Repeat until we run out of entries in x.

⋯

⋯

𝐈𝐧𝐩𝐮𝐭

𝐟𝐢𝐥𝐭𝐞𝐫

𝐨𝐮𝐭𝐩𝐮𝐭

Figure 3: 1-dimensional convolutional layer.

Now we set the stride s to be 1:

y = x ∗w =

(
k∑

i=1

wixi,

k∑
i=1

wixi+1, · · · ,
k∑

i=1

wixi+n−k

)
∈ Rn−k+1.

Is the 1-dimensional convolutional operation a linear transformation? If so, please
find the transformation matrix, then write down the gradient with respective to x.

2. 1 × 1 convolutional layer. Convolutional operations are linear transformations.
We study a simple case, 1 × 1 convolutional operation, in this question. Suppose a
convolutional layer takes as inputs the RGB 3×28×28 images X = (xijk) ∈ R3×28×28.
Suppose that the convolutional layer has three 3× 1× 1 filters where the ith filter is
denoted by wi ∈ R3. We set stride = 1 and padding = 0.

Specifically, we denote the output by Y = (yijk) ∈ R3×28×28, then

yijk =
3∑

t=1

witxtjk, i ∈ {1, 2, 3}, j, k ∈ {1, · · · , 28}.
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𝑾1

𝑾2

𝑾3

𝑿 𝒀

Figure 4: 1× 1 convolutional layer.

Now we flatten the output Y to attain a 3× 28× 28-dimensional vector,

y = (y1,1,1, y1,1,2, · · · , y1,1,28, y1,2,1, y1,2,2, · · · , y1,28,28, y2,1,1, y2,1,2, · · · , y3,28,28).

We can also flatten X to attain a 3× 28× 28-dimensional vector x.

(a) Is the 1 × 1 convolutional operation a linear transformation? If so, Please find
the transformation matrix.

(b) Please show that the 1× 1 convolutional operation is invertible if and only if the
matrix (w1,w2,w3) is invertible.

Hint: let A = (aij)m×m, B ∈ Rn×n, then the mn×mn matrix
a11B a12B · · · a1mB
a21B a22B · · · a2mB
...

... · · ·
...

am1B am2B · · · ammB


is called the Kronecker product of A and B, denoted by A ⊗ B. Furthermore,
det(A⊗B) = (det(A))n(det(B))m.

(c) Suppose x is sampled from a standard Gaussian N (0, I), please find the density
function of y if the 1× 1 convolutional operation is invertible.

3. Pooling layer. We know that average pooling and overlapping pooling are linear
transformations, but not the max pooling.

(a) Suppose an average pooling layer has window size 2×2 and stride 2, as illustrated
in the following picture. The pooling layer takes as inputs the 4 × 4 matrices.
Please find the transformation matrix of the average pooling layer.
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Figure 5: average pooling.

(b) Max pooling is generally not linear transformation. Consider the following ex-
ample we studied in this course. The max pooling layer has window size 2×2 and
stride 2, as illustrated in the following picture. The pooling layer takes as inputs
the 4 × 4 matrices. Please find the subgradient of the max pooling operation.
Then give an explanation of the “gradient” we studied in our course.

Figure 6: max pooling.

Solution: ■
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