Introduction to Machine Learning Fall 2023 University of Science and Technology of China

Lecturer: Jie Wang	Homework 3
Posted: Oct. 19, 2023	Due: Nov. 2, 2023

Notice, to get the full credits, please present your solutions step by step.

Exercise 1: Convex Sets

Let $C \subset \mathbb{R}^n$ be a nonempty convex set. Please show the following statements.

- 1. Please find the interior and relative interior of the following convex sets (you don't need to prove them).
 - (a) $\{\mathbf{x} \in \mathbb{R}^3 : x_1^2 + x_2^2 < 1, x_3 = 0\} \subset \mathbb{R}^3$.
 - (b) $\{\mathbf{A} \in S_{++}^n : \operatorname{Tr}(\mathbf{A}) = 1\} \subset \mathbb{R}^{n \times n}.$
 - (c) $\{\mathbf{A} \in S_{++}^n : \operatorname{Tr}(\mathbf{A}) = 1\} \subset S^n.$
 - (d) (Optional) $\{\mathbf{A} \in S_{++}^n : \operatorname{Tr}(\mathbf{A}) \leq 1\} \subset \mathbb{R}^{n \times n}.$
- 2. Some operations that preserve convexity.
 - (a) Both $\mathbf{cl} \ C$ and $\mathbf{int} \ C$ are convex.
 - (b) The set **relint** C is convex.
 - (c) The intersection $\bigcap_{i \in I} C_i$ of any collection $\{C_i : i \in \mathcal{I}\}$ of convex sets is convex.
 - (d) The set $\{\mathbf{y} \in \mathbb{R}^m : \mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{a}, \mathbf{x} \in C\}$ is convex, where $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{a} \in \mathbb{R}^m$.
 - (e) The set $\{\mathbf{y} \in \mathbb{R}^m : \mathbf{x} = \mathbf{B}\mathbf{y} + \mathbf{b}, \mathbf{x} \in C\}$ is convex, where $\mathbf{B} \in \mathbb{R}^{n \times m}$ and $\mathbf{b} \in \mathbb{R}^n$.

Exercise 2: Affine Sets

Please show the following statements about affine sets.

- 1. If $U \subset \mathbb{R}^n$ and $\mathbf{0} \in U$, then U is an affine set if and only if it is a subspace.
- 2. If $U \subset \mathbb{R}^n$ is an affine set, there is a unique subspace $V \subset \mathbb{R}^n$ such that $U = \mathbf{u} + V$ for any $\mathbf{u} \in U$.
- 3. Let $U = \operatorname{aff}(\{(1,0,0)^{\top}, (0,1,0)^{\top}, (0,0,1)^{\top}\})$. Given a point $\mathbf{x}_0 \in U$, find two vectors \mathbf{w}_1 and \mathbf{w}_2 such that we can represent any vectors $\mathbf{w} \in U$ in the form of $\mathbf{w} = \mathbf{x}_0 + \alpha_1 \mathbf{w}_1 + \alpha_2 \mathbf{w}_2$ uniquely.

Exercise 3: Relative Interior and Interior

Let $C \subset \mathbb{R}^n$ be a nonempty convex set.

- 1. Let $\mathbf{x}_0 \in C$. Please show the following statements. The point $\mathbf{x}_0 \in \mathbf{relint} \ C$ if and only if there exists r > 0 such that $\mathbf{x}_0 + r\mathbf{v} \in C$ for any $\mathbf{v} \in \mathbf{aff} \ C \mathbf{x}_0$ and $\|\mathbf{v}\|_2 \leq 1$.
- 2. (a) Please show that $\mathbf{x} \in \operatorname{relint} C$ if and only if for any $\mathbf{y} \in C$, there exists $\gamma > 0$ such that $\mathbf{x} + \gamma(\mathbf{x} \mathbf{y}) \in C$. Hint: the result in Question 1 may be useful.
 - (b) Please show that if x ∈ relint C, y ∈ cl C, then λx + (1 − λ)y ∈ relint C for λ ∈ (0, 1].
 Hint: there exists r > 0, such that B(x, r) ∩ aff C ⊂ relint C. Then consider the convex hull of (B(x, r) ∩ aff C) ∪ {y}.
- 3. (Optional) Please show the following statements.
 - (a) Suppose int C is nonempty, then int C = int (cl C). Hint: notice that relint C = int C if int C is nonempty, then apply Ex 3.2(b). (in fact, the result still holds when $C = \emptyset$.)
 - (b) $\mathbf{cl}(\mathbf{relint} \ C) = \mathbf{cl} \ C.$ Hint: you can use $\mathbf{Ex} \ 3.2(\mathbf{b}).$
 - (c) relint (cl C) = relint C.

Exercise 4: Relative Boundary

The relative boundary of a set $S \subset \mathbb{R}^n$ is defined as **relbd** $S = \mathbf{cl} S \setminus \mathbf{relint} S$. Please show the following statements **or give counter-examples**.

- 1. For a set $S \subset \mathbb{R}^n$, relbd $S \subset$ bd S.
- 2. For a set $S \subset \mathbb{R}^n$, relbd S = bd S.
- 3. For a set $S \subset \mathbb{R}^n$, relbd S = relbd cl S.
- 4. For a set $S \subset \mathbb{R}^n$ and $\mathbf{x}_0 \in \mathbf{cl} S$, we can find a sequence $\{\mathbf{x}_k\} \subset \mathbb{R}^n \setminus \mathbf{cl} S$ such that $\mathbf{x}_k \to \mathbf{x}_0$ as $k \to \infty$.

Exercise 5: Supporting Hyperplane

- 1. From the lecture, we know that there exsits supporting hyperplanes at the boundary point of a convex set. Please solve the following questions.
 - (a) Express the closed convex set $\{\mathbf{x} \in \mathbb{R}^2_+ \mid x_1x_2 \ge 1\}$ as an intersection of halfspaces.
 - (b) Let $C = \{ \mathbf{x} \in \mathbb{R}^n \mid \|\mathbf{x}\|_{\infty} \leq 1 \}$, the ∞ -norm unit ball in \mathbb{R}^n , and let $\hat{\mathbf{x}}$ be a point in the boundary of C. Identify the supporting hyperplanes of C at $\hat{\mathbf{x}}$ explicitly. (The ∞ -norm of a point $\mathbf{x} \in \mathbb{R}^n$ is defined as $\max_{1 \leq i \leq n} |x_i|$.)
- 2. On the linear space of symmetric $n \times n$ matrices S^n , we can define the standard inner product $\operatorname{tr}(XY) = \sum_{i,j=1}^n X_{ij}Y_{ij}$. From **Ex7** in **HW2**, we know the positive semi-definite cone S^n_+ isn't a polyhedron. However, please show that we can express S^n_+ as an intersection of halfspaces. Specifically, for $X, Y \in S^n$,

 $tr(XY) \ge 0$ for all $X \ge 0 \Leftrightarrow Y \ge 0$.

3. The set of separating hyperplanes: Suppose that C and D are disjoint subsets of \mathbb{R}^n (C and D may not be the convex sets). Consider the set of $(\mathbf{a}, b) \in \mathbb{R}^{n+1}$ for which $\mathbf{a}^T \mathbf{x} \leq b$ for all $\mathbf{x} \in C$, and $\mathbf{a}^T \mathbf{x} \geq b$ for all $\mathbf{x} \in D$. Show that this set is a convex cone (if there is no hyperplane that separates C and D, the set becomes $\{(\mathbf{0}, 0)\}$).

Exercise 6: Farkas' Lemma

Let $\mathbf{A} = (\mathbf{a}_1, \cdots, \mathbf{a}_n) \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$. Consider a set $A = {\mathbf{a}_1, \cdots, \mathbf{a}_n}$. Its conic hall **cone** A is defined as

$$\operatorname{cone} A = \{\sum_{i=1}^{n} \alpha_i \mathbf{a}_i : \alpha_i \ge 0, \mathbf{a}_i \in A\}.$$

- 1. Please show that $\operatorname{cone} A$ is closed and convex.
- 2. If $\mathbf{b} \in \mathbf{cone} A$, please show that there exists $\mathbf{x} \in \mathbb{R}^n$ such that $\mathbf{A}\mathbf{x} = \mathbf{b}$ and $\mathbf{x} \ge \mathbf{0}$.
- 3. If $\mathbf{b} \notin \mathbf{cone} A$, use separation theorems to show that there exists $\mathbf{y} \in \mathbb{R}^m$, such that $\mathbf{A}^\top \mathbf{y} \ge \mathbf{0}$ and $\mathbf{b}^\top \mathbf{y} < 0$.
- 4. Now you can prove Farkas' Lemma: for given $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$, one and only one of the two statements hold:
 - $\exists \mathbf{x} \in \mathbb{R}^n$, $\mathbf{A}\mathbf{x} = \mathbf{b}$ and $\mathbf{x} \ge \mathbf{0}$.
 - $\exists \mathbf{y} \in \mathbb{R}^m, \mathbf{A}^\top \mathbf{y} \ge \mathbf{0} \text{ and } \mathbf{b}^\top \mathbf{y} < 0.$

Solution:

REFERENCES

Homework3

References