Introduction to Machine Learning

Fall 2023
University of Science and Technology of China
Lecturer: Jie Wang

Homework 2
Due: Oct. 19, 2023

Notice, to get the full credits, please present your solutions step by step.

Exercise 1: Projection

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{x} \in \mathbb{R}^{m}$. Define

$$
\mathbf{P}_{\mathbf{A}}(\mathbf{x})=\underset{\mathbf{z} \in \mathbb{R}^{m}}{\operatorname{argmin}}\left\{\|\mathbf{x}-\mathbf{z}\|_{2}: \mathbf{z} \in \mathcal{C}(\mathbf{A})\right\} .
$$

We call $\mathbf{P}_{\mathbf{A}}(\mathbf{x})$ the projection of the point \mathbf{x} onto the column space of \mathbf{A}.

1. Please prove that $\mathbf{P}_{\mathbf{A}}(\mathbf{x})$ is unique for any $\mathbf{x} \in \mathbb{R}^{m}$.
2. Let $\mathbf{v}_{i} \in \mathbb{R}^{n}, i=1, \ldots, d$ with $d \leq n$, which are linearly independent.
(a) For any $\mathbf{w} \in \mathbb{R}^{n}$, please find $\mathbf{P}_{\mathbf{v}_{1}}(\mathbf{w})$, which is the projection of \mathbf{w} onto the subspace spanned by \mathbf{v}_{1}.
(b) Please show $\mathbf{P}_{\mathbf{v}_{1}}(\cdot)$ is a linear map, i.e.,

$$
\mathbf{P}_{\mathbf{v}_{1}}(\alpha \mathbf{u}+\beta \mathbf{w})=\alpha \mathbf{P}_{\mathbf{v}_{1}}(\mathbf{u})+\beta \mathbf{P}_{\mathbf{v}_{1}}(\mathbf{w}),
$$

where $\alpha, \beta \in \mathbb{R}$ and $\mathbf{w} \in \mathbb{R}^{n}$.
(c) Please find the projection matrix corresponding to the linear map $\mathbf{P}_{\mathbf{v}_{1}}(\cdot)$, i.e., find the matrix $\mathbf{H}_{1} \in \mathbb{R}^{n \times n}$ such that

$$
\mathbf{P}_{\mathbf{v}_{1}}(\mathbf{w})=\mathbf{H}_{1} \mathbf{w}
$$

(d) Let $\mathbf{V}=\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{d}\right)$, and $\mathbf{v}_{1}, \ldots, \mathbf{v}_{d}$ are linearly independent.
i. For any $\mathbf{w} \in \mathbb{R}^{n}$, please find $\mathbf{P}_{\mathbf{V}}(\mathbf{w})$ and the corresponding projection matrix H.
ii. Please find \mathbf{H} if we further assume that $\mathbf{v}_{i}^{\top} \mathbf{v}_{j}=0, \forall i \neq j$.
3. (a) Suppose that

$$
\mathbf{A}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

What are the coordinates of $\mathbf{P}_{\mathbf{A}}(\mathbf{x})$ with respect to the column vectors in \mathbf{A} for any $\mathrm{x} \in \mathbb{R}^{2}$? Are the coordinates unique?
(b) Suppose that

$$
\mathbf{A}=\left[\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right]
$$

What are the coordinates of $\mathbf{P}_{\mathbf{A}}(\mathbf{x})$ with respect to the column vectors in \mathbf{A} for any $\mathrm{x} \in \mathbb{R}^{2}$? Are the coordinates unique?

Homework2

4. (Optional) A matrix \mathbf{P} is called a projection matrix if $\mathbf{P x}$ is the projection of \mathbf{x} onto $\mathcal{C}(\mathbf{P})$ for any \mathbf{x}.
(a) Let λ be the eigenvalue of \mathbf{P}. Show that λ is either 1 or 0 . (Hint: you may want to figure out what the eigenspaces corresponding to $\lambda=1$ and $\lambda=0$ are, respectively.)
(b) Show that \mathbf{P} is a projection matrix if and only if $\mathbf{P}^{2}=\mathbf{P}$ and \mathbf{P} is symmetric.
5. (Optional) Let $\mathbf{B} \in \mathbb{R}^{m \times s}$ and $\mathcal{C}(\mathbf{B})$ be its column space. Suppose that $\mathcal{C}(\mathbf{B})$ is a proper subspace of $\mathcal{C}(\mathbf{A})$. Is $\mathbf{P}_{\mathbf{B}}(\mathbf{x})$ the same as $\mathbf{P}_{\mathbf{B}}\left(\mathbf{P}_{\mathbf{A}}(\mathbf{x})\right)$? Please show your claim rigorously.

Homework2

Exercise 2: Projection to a Matrix Space

Let $\mathbb{R}^{n \times n}$ be the linear space of $n \times n$ matrices. The inner product in this space is defined as

$$
\langle A, B\rangle=\operatorname{tr}\left(A^{T} B\right) .
$$

1. Show that the set of diagonal matrices in $\mathbb{R}^{n \times n}$ forms a linear space. Besides, please find the the projection of any matrix onto the space of diagonal matrices.
2. Prove that the set of symmetric matrices, denoted S^{n}, in $\mathbb{R}^{n \times n}$ forms a linear space. Also, determine the dimension of this linear space.
3. Show that the inner product of any symmetric matrix and skew-symmetric matrix is zero. Moreover, prove that any matrix can be decomposed as the sum of a symmetric matrix and a skew-symmetric matrix.
4. Find the projection of any matrix onto the space of symmetric matrices.

Homework2

Exercise 3: Projection to a Function Space

1. Suppose X and Y are both random variables defined in the same sample space Ω with finite second-order moment, i.e. $\mathbb{E}\left[X^{2}\right], \mathbb{E}\left[Y^{2}\right]<\infty$.
(a) Let $L^{2}(\Omega)=\left\{Z: \Omega \rightarrow \mathbb{R} \mid \mathbb{E}\left[Z^{2}\right]<\infty\right\}$ be the set of random variables with finite second-order moment. Please show that $L^{2}(\Omega)$ is a linear space, and $\langle X, Y\rangle:=$ $\mathbb{E}[X Y]$ defines an inner product in $L^{2}(\Omega)$. Then find the projection of Y on the subspace of $L^{2}(\Omega)$ consisting of all constant variables.
(b) Please find a real constant \hat{c}, such that

$$
\hat{c}=\underset{c \in \mathbb{R}}{\operatorname{argmin}} \mathbb{E}\left[(Y-c)^{2}\right] .
$$

[Hint: you can solve it by completing the square.]
(c) Please find the necessary and sufficient condition where $\min _{c \in \mathbb{R}} \mathbb{E}\left[(Y-c)^{2}\right]=$ $\mathbb{E}\left[Y^{2}\right]$. Then give it a geometric interpretation using inner product and projection.
2. Suppose X and Y are both random variables defined in the same sample space Ω and all the expectations exist in this problem. Consider the problem

$$
\min _{f: \mathbb{R} \rightarrow \mathbb{R}} \mathbb{E}\left[(f(X)-Y)^{2}\right] .
$$

(a) Please solve the above problem by completing the square.
(b) We let $\mathcal{C}(X)$ denote the subspace $\left\{f(X) \mid f(\cdot): \mathbb{R} \rightarrow \mathbb{R}, \mathbb{E}\left[f(X)^{2}\right]<\infty\right\}$ of $L^{2}(\Omega)$. Please show that the solution of the above problem is the projection of Y on $\mathcal{C}(X)$.
(c) Please show that question 1 is a special case of question 2. Please give a geometric interpretation of conditional expectation.

Homework2

Exercise 4: Regularized least squares

Suppose that $\mathbf{X} \in \mathbb{R}^{n \times d}$.

1. Please show that $\mathbf{X}^{\top} \mathbf{X}$ is always positive semi-definite. Moreover, $\mathbf{X}^{\top} \mathbf{X}$ is positive definite if and only if $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{d}$ are linearly independent.
2. Please show that $\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{I}$ is always invertible, where $\lambda>0$ and $\mathbf{I} \in \mathbb{R}^{d \times d}$ is an identity matrix.
3. (Optional) Consider the regularized least squares linear regression and denote

$$
\mathbf{w}^{*}(\lambda)=\underset{\mathbf{w}}{\operatorname{argmin}} L(\mathbf{w})+\lambda \Omega(\mathbf{w}),
$$

where $L(\mathbf{w})=\frac{1}{n}\|\mathbf{y}-\mathbf{X w}\|_{2}^{2}$ and $\Omega(\mathbf{w})=\|\mathbf{w}\|_{2}^{2}$. For regular parameters $0<\lambda_{1}<\lambda_{2}$, please show that $L\left(\mathbf{w}^{*}\left(\lambda_{1}\right)\right)<L\left(\mathbf{w}^{*}\left(\lambda_{2}\right)\right)$ and $\Omega\left(\mathbf{w}^{*}\left(\lambda_{1}\right)\right)>\Omega\left(\mathbf{w}^{*}\left(\lambda_{2}\right)\right)$. Explain intuitively why this holds.

Homework2

Exercise 5: Bias-Variance Trade-off (Programming Exercise)

We provide you with $L=100$ data sets, each having $N=25$ points:

$$
\mathcal{D}^{(l)}=\left\{\left(x_{n}, y_{n}^{(l)}\right)\right\}_{n=1}^{N}, \quad l=1,2, \cdots, L,
$$

where x_{n} are uniformly taken from $[-1,1]$, and all points $\left(x_{n}, y_{n}^{(l)}\right)$ are independently from the sinusoidal curve $h(x)=\sin (\pi x)$ with an additional disturbance.

1. For each data set $\mathcal{D}^{(l)}$, consider fitting a model with 24 Gaussian basis functions

$$
\phi_{j}(x)=e^{-\left(x-\mu_{j}\right)^{2}}, \quad \mu_{j}=0.2 \cdot(j-12.5), \quad j=1, \cdots 24
$$

by minimizing the regularized error function

$$
L^{(l)}(\mathbf{w})=\frac{1}{2} \sum_{n=1}^{N}\left(y_{n}^{(l)}-\mathbf{w}^{\top} \boldsymbol{\phi}\left(x_{n}\right)\right)^{2}+\frac{\lambda}{2} \mathbf{w}^{\top} \mathbf{w},
$$

where $\mathbf{w} \in \mathbb{R}^{25}$ is the parameter, $\boldsymbol{\phi}(x)=\left(1, \phi_{1}(x), \cdots, \phi_{24}(x)\right)^{\top}$ and λ is the regular coefficient. What's the closed form of the parameter estimator $\hat{\mathbf{w}}^{(l)}$ for the data set $\mathcal{D}^{(l)}$?
2. For $\log _{10} \lambda=-10,-5,-1,1$, plot the prediction functions $y^{(l)}(x)=f_{\mathcal{D}^{(l)}}(x)$ on $[-1,1]$ respectively. For clarity, show only the first 25 fits in the figure for each λ.
3. For $\log _{10} \lambda \in[-3,1]$, calculate the followings:

$$
\begin{aligned}
\bar{y}(x) & =\mathbb{E}_{\mathcal{D}}\left[f_{\mathcal{D}}(x)\right]=\frac{1}{L} \sum_{l=1}^{L} y^{(l)}(x) \\
(\mathrm{bias})^{2} & =\mathbb{E}_{X}\left[\left(\mathbb{E}_{\mathcal{D}}\left[f_{\mathcal{D}}(X)\right]-h(X)\right)^{2}\right]=\frac{1}{N} \sum_{n=1}^{N}\left(\bar{y}\left(x_{n}\right)-h\left(x_{n}\right)\right)^{2} \\
\text { variance } & =\mathbb{E}_{X}\left[\mathbb{E}_{\mathcal{D}}\left[\left(f_{\mathcal{D}}(\mathbf{x})-\mathbb{E}_{\mathcal{D}}\left[f_{\mathcal{D}}(\mathbf{x})\right]\right)^{2}\right]\right]=\frac{1}{N} \sum_{n=1}^{N} \frac{1}{L} \sum_{l=1}^{L}\left(y^{(l)}\left(x_{n}\right)-\bar{y}\left(x_{n}\right)\right)^{2}
\end{aligned}
$$

Plot the three quantities, $(\text { bias })^{2}$, variance and $(\text { bias })^{2}+$ variance in one figure, as the functions of $\log _{10} \lambda$. (Hint: see [1] for an example.)

Homework2

Exercise 6: Linear Regression (Programming Exercise)

Consider a data set $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$, where $x_{i}, y_{i} \in \mathbb{R}$.

1. If we want to fit the data by a linear model

$$
\begin{equation*}
y=w_{0}+w_{1} x \tag{1}
\end{equation*}
$$

please find \hat{w}_{0} and \hat{w}_{1} by the least squares approach (you need to find expressions of \hat{w}_{0} and \hat{w}_{1} by $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$, respectively).
2. We provide you a data set $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{30}$. Consider the model in (1) and the one as follows:

$$
\begin{equation*}
y=w_{0}+w_{1} x+w_{2} x^{2} . \tag{2}
\end{equation*}
$$

Which model do you think fits better the data? Please detail your approach first and then implement it by your favorite programming language. The required output includes
(a) your detailed approach step by step;
(b) your code with detailed comments according to your planned approach;
(c) a plot showing the data and the fitting models;
(d) the model you finally choose $\left[\hat{w}_{0}\right.$ and \hat{w}_{1} if you choose the model in (1), or \hat{w}_{0}, \hat{w}_{1}, and \hat{w}_{2} if you choose the model in (2)].

Exercise 7: (Optional) Positive Semi-definite Matrices and the Polyhedron

Please show that \mathbb{S}_{+}^{n} is not a polyhedron.

[^0]
References

[1] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[^0]: You will attain one extra point of bonus in your final rating if you work out this problem.

