Introduction to Machine Learning Fall 2023 University of Science and Technology of China

Lecturer: Jie Wang	Homework 2
Posted: Oct. 10, 2023	Due: Oct. 19, 2023

Notice, to get the full credits, please present your solutions step by step.

Exercise 1: Projection

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{x} \in \mathbb{R}^m$. Define

$$\mathbf{P}_{\mathbf{A}}(\mathbf{x}) = \operatorname*{argmin}_{\mathbf{z} \in \mathbb{R}^m} \{ \|\mathbf{x} - \mathbf{z}\|_2 : \mathbf{z} \in \mathcal{C}(\mathbf{A}) \}.$$

We call $\mathbf{P}_{\mathbf{A}}(\mathbf{x})$ the projection of the point \mathbf{x} onto the column space of \mathbf{A} .

- 1. Please prove that $\mathbf{P}_{\mathbf{A}}(\mathbf{x})$ is unique for any $\mathbf{x} \in \mathbb{R}^m$.
- 2. Let $\mathbf{v}_i \in \mathbb{R}^n$, $i = 1, \ldots, d$ with $d \leq n$, which are linearly independent.
 - (a) For any $\mathbf{w} \in \mathbb{R}^n$, please find $\mathbf{P}_{\mathbf{v}_1}(\mathbf{w})$, which is the projection of \mathbf{w} onto the subspace spanned by \mathbf{v}_1 .
 - (b) Please show $\mathbf{P}_{\mathbf{v}_1}(\cdot)$ is a linear map, i.e.,

$$\mathbf{P}_{\mathbf{v}_1}(\alpha \mathbf{u} + \beta \mathbf{w}) = \alpha \mathbf{P}_{\mathbf{v}_1}(\mathbf{u}) + \beta \mathbf{P}_{\mathbf{v}_1}(\mathbf{w}),$$

where $\alpha, \beta \in \mathbb{R}$ and $\mathbf{w} \in \mathbb{R}^n$.

(c) Please find the projection matrix corresponding to the linear map $\mathbf{P}_{\mathbf{v}_1}(\cdot)$, i.e., find the matrix $\mathbf{H}_1 \in \mathbb{R}^{n \times n}$ such that

$$\mathbf{P}_{\mathbf{v}_1}(\mathbf{w}) = \mathbf{H}_1 \mathbf{w}.$$

- (d) Let $\mathbf{V} = (\mathbf{v}_1, \dots, \mathbf{v}_d)$, and $\mathbf{v}_1, \dots, \mathbf{v}_d$ are linearly independent.
 - i. For any $\mathbf{w} \in \mathbb{R}^n$, please find $\mathbf{P}_{\mathbf{V}}(\mathbf{w})$ and the corresponding projection matrix **H**.
 - ii. Please find **H** if we further assume that $\mathbf{v}_i^\top \mathbf{v}_j = 0, \, \forall \, i \neq j.$
- 3. (a) Suppose that

$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

What are the coordinates of $\mathbf{P}_{\mathbf{A}}(\mathbf{x})$ with respect to the column vectors in \mathbf{A} for any $\mathbf{x} \in \mathbb{R}^2$? Are the coordinates unique?

(b) Suppose that

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}.$$

What are the coordinates of $\mathbf{P}_{\mathbf{A}}(\mathbf{x})$ with respect to the column vectors in \mathbf{A} for any $\mathbf{x} \in \mathbb{R}^2$? Are the coordinates unique?

- 4. (Optional) A matrix **P** is called a projection matrix if **P** \mathbf{x} is the projection of \mathbf{x} onto $\mathcal{C}(\mathbf{P})$ for any \mathbf{x} .
 - (a) Let λ be the eigenvalue of **P**. Show that λ is either 1 or 0. (*Hint: you may want to figure out what the eigenspaces corresponding to* $\lambda = 1$ and $\lambda = 0$ are, respectively.)
 - (b) Show that **P** is a projection matrix if and only if $\mathbf{P}^2 = \mathbf{P}$ and **P** is symmetric.
- 5. (Optional) Let $\mathbf{B} \in \mathbb{R}^{m \times s}$ and $\mathcal{C}(\mathbf{B})$ be its column space. Suppose that $\mathcal{C}(\mathbf{B})$ is a proper subspace of $\mathcal{C}(\mathbf{A})$. Is $\mathbf{P}_{\mathbf{B}}(\mathbf{x})$ the same as $\mathbf{P}_{\mathbf{B}}(\mathbf{P}_{\mathbf{A}}(\mathbf{x}))$? Please show your claim rigorously.

Exercise 2: Projection to a Matrix Space

Let $\mathbb{R}^{n\times n}$ be the linear space of $n\times n$ matrices. The inner product in this space is defined as

$$\langle A, B \rangle = \operatorname{tr}(A^T B).$$

- 1. Show that the set of diagonal matrices in $\mathbb{R}^{n \times n}$ forms a linear space. Besides, please find the the projection of any matrix onto the space of diagonal matrices.
- 2. Prove that the set of symmetric matrices, denoted S^n , in $\mathbb{R}^{n \times n}$ forms a linear space. Also, determine the dimension of this linear space.
- 3. Show that the inner product of any symmetric matrix and skew-symmetric matrix is zero. Moreover, prove that any matrix can be decomposed as the sum of a symmetric matrix and a skew-symmetric matrix.
- 4. Find the projection of any matrix onto the space of symmetric matrices.

Exercise 3: Projection to a Function Space

- 1. Suppose X and Y are both random variables defined in the same sample space Ω with finite second-order moment, i.e. $\mathbb{E}[X^2], \mathbb{E}[Y^2] < \infty$.
 - (a) Let $L^2(\Omega) = \{Z : \Omega \to \mathbb{R} \mid \mathbb{E}[Z^2] < \infty\}$ be the set of random variables with finite second-order moment. Please show that $L^2(\Omega)$ is a linear space, and $\langle X, Y \rangle := \mathbb{E}[XY]$ defines an inner product in $L^2(\Omega)$. Then find the projection of Y on the subspace of $L^2(\Omega)$ consisting of all constant variables.
 - (b) Please find a real constant \hat{c} , such that

$$\hat{c} = \operatorname*{argmin}_{c \in \mathbb{R}} \mathbb{E}[(Y - c)^2].$$

[Hint: you can solve it by completing the square.]

- (c) Please find the necessary and sufficient condition where $\min_{c \in \mathbb{R}} \mathbb{E}[(Y c)^2] = \mathbb{E}[Y^2]$. Then give it a geometric interpretation using inner product and projection.
- 2. Suppose X and Y are both random variables defined in the same sample space Ω and all the expectations exist in this problem. Consider the problem

$$\min_{f:\mathbb{R}\to\mathbb{R}} \mathbb{E}[(f(X) - Y)^2].$$

- (a) Please solve the above problem by completing the square.
- (b) We let $\mathcal{C}(X)$ denote the subspace $\{f(X) \mid f(\cdot) : \mathbb{R} \to \mathbb{R}, \mathbb{E}[f(X)^2] < \infty\}$ of $L^2(\Omega)$. Please show that the solution of the above problem is the projection of Y on $\mathcal{C}(X)$.
- (c) Please show that question 1 is a special case of question 2. Please give a geometric interpretation of conditional expectation.

Exercise 4: Regularized least squares

Suppose that $\mathbf{X} \in \mathbb{R}^{n \times d}$.

- 1. Please show that $\mathbf{X}^{\top}\mathbf{X}$ is always positive semi-definite. Moreover, $\mathbf{X}^{\top}\mathbf{X}$ is positive definite if and only if $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_d$ are linearly independent.
- 2. Please show that $\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}$ is always invertible, where $\lambda > 0$ and $\mathbf{I} \in \mathbb{R}^{d \times d}$ is an identity matrix.
- 3. (Optional) Consider the regularized least squares linear regression and denote

$$\mathbf{w}^*(\lambda) = \operatorname*{argmin}_{\mathbf{w}} L(\mathbf{w}) + \lambda \Omega(\mathbf{w}),$$

where $L(\mathbf{w}) = \frac{1}{n} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2$ and $\Omega(\mathbf{w}) = \|\mathbf{w}\|_2^2$. For regular parameters $0 < \lambda_1 < \lambda_2$, please show that $L(\mathbf{w}^*(\lambda_1)) < L(\mathbf{w}^*(\lambda_2))$ and $\Omega(\mathbf{w}^*(\lambda_1)) > \Omega(\mathbf{w}^*(\lambda_2))$. Explain intuitively why this holds.

Exercise 5: Bias-Variance Trade-off (Programming Exercise)

We provide you with L = 100 data sets, each having N = 25 points:

$$\mathcal{D}^{(l)} = \{(x_n, y_n^{(l)})\}_{n=1}^N, \quad l = 1, 2, \cdots, L$$

where x_n are uniformly taken from [-1, 1], and all points $(x_n, y_n^{(l)})$ are independently from the sinusoidal curve $h(x) = \sin(\pi x)$ with an additional disturbance.

1. For each data set $\mathcal{D}^{(l)}$, consider fitting a model with 24 Gaussian basis functions

$$\phi_j(x) = e^{-(x-\mu_j)^2}, \quad \mu_j = 0.2 \cdot (j-12.5), \quad j = 1, \dots 24$$

by minimizing the regularized error function

$$L^{(l)}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (y_n^{(l)} - \mathbf{w}^{\top} \boldsymbol{\phi}(x_n))^2 + \frac{\lambda}{2} \mathbf{w}^{\top} \mathbf{w},$$

where $\mathbf{w} \in \mathbb{R}^{25}$ is the parameter, $\boldsymbol{\phi}(x) = (1, \phi_1(x), \cdots, \phi_{24}(x))^{\top}$ and λ is the regular coefficient. What's the closed form of the parameter estimator $\hat{\mathbf{w}}^{(l)}$ for the data set $\mathcal{D}^{(l)}$?

- 2. For $\log_{10} \lambda = -10, -5, -1, 1$, plot the prediction functions $y^{(l)}(x) = f_{\mathcal{D}^{(l)}}(x)$ on [-1, 1] respectively. For clarity, show only the first 25 fits in the figure for each λ .
- 3. For $\log_{10} \lambda \in [-3, 1]$, calculate the followings:

$$\bar{y}(x) = \mathbb{E}_{\mathcal{D}}[f_{\mathcal{D}}(x)] = \frac{1}{L} \sum_{l=1}^{L} y^{(l)}(x)$$

(bias)² = $\mathbb{E}_{X}[(\mathbb{E}_{\mathcal{D}}[f_{\mathcal{D}}(X)] - h(X))^{2}] = \frac{1}{N} \sum_{n=1}^{N} (\bar{y}(x_{n}) - h(x_{n}))^{2}$
variance = $\mathbb{E}_{X}[\mathbb{E}_{\mathcal{D}}[(f_{\mathcal{D}}(\mathbf{x}) - \mathbb{E}_{\mathcal{D}}[f_{\mathcal{D}}(\mathbf{x})])^{2}]] = \frac{1}{N} \sum_{n=1}^{N} \frac{1}{L} \sum_{l=1}^{L} (y^{(l)}(x_{n}) - \bar{y}(x_{n}))^{2}$

Plot the three quantities, $(bias)^2$, variance and $(bias)^2$ + variance in one figure, as the functions of $\log_{10} \lambda$. (**Hint:** see [1] for an example.)

Exercise 6: Linear Regression (Programming Exercise)

Consider a data set $\{(x_i, y_i)\}_{i=1}^n$, where $x_i, y_i \in \mathbb{R}$.

1. If we want to fit the data by a linear model

$$y = w_0 + w_1 x,\tag{1}$$

please find \hat{w}_0 and \hat{w}_1 by the least squares approach (you need to find expressions of \hat{w}_0 and \hat{w}_1 by $\{(x_i, y_i)\}_{i=1}^n$, respectively).

2. We provide you a data set $\{(x_i, y_i)\}_{i=1}^{30}$. Consider the model in (1) and the one as follows:

$$y = w_0 + w_1 x + w_2 x^2. (2)$$

Which model do you think fits better the data? Please detail your approach first and then implement it by your favorite programming language. The required output includes

- (a) your detailed approach step by step;
- (b) your code with detailed comments according to your planned approach;
- (c) a plot showing the data and the fitting models;
- (d) the model you finally choose $[\hat{w}_0 \text{ and } \hat{w}_1 \text{ if you choose the model in (1), or } \hat{w}_0, \hat{w}_1, \text{ and } \hat{w}_2 \text{ if you choose the model in (2)].}$

Exercise 7: (Optional) Positive Semi-definite Matrices and the Polyhedron Please show that \mathbb{S}^n_+ is not a polyhedron.

You will attain one extra point of bonus in your final rating if you work out this problem.

References

[1] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.