# Introduction to Machine Learning 

Fall 2023
University of Science and Technology of China
Lecturer: Jie Wang
Homework 1
Posted: Sep. 14, 2023
Due: Sep. 28, 2023

Notice, to get the full credits, please present your solutions step by step.

## Exercise 1: Bolzano-Weierstrass Theorem

The Least Upper Bound Axiom
Any nonempty set of real numbers with an upper bound has a least upper bound. That is, $\sup C$ always exists for a nonempty bounded above set $C \subset \mathbb{R}$.

Please show the following statements from the least upper bound axiom.

1. Let $C$ be a nonempty subset of $\mathbb{R}$ that is bounded above. Prove that $u=\sup C$ if and only if $u$ is an upper bound of $C$ and

$$
\forall \epsilon>0, \exists a \in C \text { such that } a>u-\epsilon .
$$

2. Suppose $\left(x_{n}\right)$ be a sequence of real numbers such that $x_{n} \in[a, b], \forall n$, please show that there exists $c \in[a, b]$ and a subsequence $\left(x_{n_{k}}\right)$ of $\left(x_{n}\right)$ such that $x_{n_{k}} \rightarrow c$ as $k \rightarrow \infty$.

## Homework 1

## Exercise 2: Limit and Limit Points

1. Show that $\left\{\mathbf{x}_{n}\right\}$ in $\mathbb{R}^{n}$ converges to $\mathbf{x} \in \mathbb{R}^{n}$ if and only if $\left\{\mathbf{x}_{n}\right\}$ is bounded and has a unique limit point $\mathbf{x}$.
2. (Limit Points of a Set). Let $C$ be a subset of $\mathbb{R}^{n}$. A point $\mathbf{x} \in \mathbb{R}^{n}$ is called a limit point of $C$ if there is a sequence $\left\{\mathbf{x}_{n}\right\}$ in $C$ such that $\mathbf{x}_{n} \rightarrow \mathbf{x}$ and $\mathbf{x}_{n} \neq \mathbf{x}$ for all positive integers $n$. If $\mathbf{x} \in C$ and $\mathbf{x}$ is not a limit point of $C$, then $\mathbf{x}$ is called an isolated point of $C$. Let $C^{\prime}$ be the set of limit points of the set $C$. Please show the following statements.
(a) If $C=(0,1) \cup\{2\} \subset \mathbb{R}$, then $C^{\prime}=[0,1]$ and $x=2$ is an isolated point of $C$.
(b) The set $C^{\prime}$ is closed.
(c) The closure of $C$ is the union of $C^{\prime}$ and $C$; that is $\mathbf{c l} C=C^{\prime} \cup C$. Moreover, $C^{\prime} \subset C$ if and only if $C$ is closed.

## Homework 1

## Exercise 3: Norms

In this exercise, we will give some examples of norms and a useful theorem related to norms in finite dimensional vector space.

1. $l_{p}$ norm: The $l_{p}$ norm is defined by

$$
\|\mathbf{x}\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}
$$

where $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ and $p \geq 1$.
(a) Please show that the $l_{p}$ norm is a norm.
(b) Please show that the following equality.

$$
\lim _{p \rightarrow \infty}\|\mathbf{x}\|_{p}=\|\mathbf{x}\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right| .
$$

The $l_{\infty}$ norm is defined as above.
2. Operator norms: Suppose that $\mathbf{A} \in \mathbb{R}^{m \times n}$, which can be viewed as a linear transformation from $\mathbb{R}^{n}$ to $\mathbb{R}^{m}$. Please show the following operator norms' equality.
(a) Let $\|\mathbf{A}\|_{1}=\sup _{\mathbf{x} \in \mathbb{R}^{n}, \mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{A x}\|_{1}}{\|\mathbf{x}\|_{1}}$. Please show that

$$
\|\mathbf{A}\|_{1}=\max _{1 \leq j \leq n} \sum_{i=1}^{m}\left|a_{i j}\right| .
$$

(b) Let $\|\mathbf{A}\|_{\infty}=\sup _{\mathbf{x} \in \mathbb{R}^{n}, \mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{A} \mathbf{x}\|_{\infty}}{\|\mathbf{x}\|_{\infty}}$. Please show that

$$
\|\mathbf{A}\|_{\infty}=\max _{1 \leq i \leq m} \sum_{j=1}^{n}\left|a_{i j}\right| .
$$

3. (Optional) Dual norm: Let $\|\cdot\|$ be a norm on $\mathbb{R}^{n}$. The dual norm of $\|\cdot\|$ is defined by

$$
\|\mathbf{x}\|_{*}=\sup _{\mathbf{y} \in \mathbb{R}^{n},\|\mathbf{y}\| \leq 1} \mathbf{y}^{\top} \mathbf{x} .
$$

(a) Please show that the dual of the Euclidean norm is the Euclidean norm itself. i.e.,

$$
\sup _{\mathbf{y} \in \mathbb{R}^{n},\|\mathbf{y}\|_{2} \leq 1} \mathbf{y}^{\top} \mathbf{x}=\|\mathbf{x}\|_{2} .
$$

(b) Please show that the dual of the $l_{1}$ norm is the $l_{\infty}$ norm. i.e.,

$$
\sup _{\mathbf{y} \in \mathbb{R}^{n},\|\mathbf{y}\|_{1} \leq 1} \mathbf{y}^{\top} \mathbf{x}=\|\mathbf{x}\|_{\infty}
$$

## Homework 1

## 4. (Optional) Equivalence of norms:

(a) Let $\|\cdot\|_{a}$ and $\|\cdot\|_{b}$ be two norms on $\mathbb{R}^{n}$. We say that $\|\cdot\|_{a}$ and $\|\cdot\|_{b}$ are equivalent if there exist two positive constants $c_{1}$ and $c_{2}$ such that

$$
c_{1}\|\mathbf{x}\|_{a} \leq\|\mathbf{x}\|_{b} \leq c_{2}\|\mathbf{x}\|_{a}, \quad \forall \mathbf{x} \in \mathbb{R}^{n} .
$$

Please show that all norms on $\mathbb{R}^{n}$ are equivalent.
(b) Suppose $\mathbf{X}_{\mathbf{1}}=\left(\mathbb{R}^{n},\|\cdot\|_{a}\right)$ and $\mathbf{X}_{\mathbf{2}}=\left(\mathbb{R}^{n},\|\cdot\|_{b}\right)$ are two normed vector spaces. Please show that if $\left(\mathbf{x}_{\mathbf{n}}\right)$ converges to $\mathbf{x}$ in $\mathbf{X}_{\mathbf{1}}$, then $\left(\mathbf{x}_{\mathbf{n}}\right)$ also converges to $\mathbf{x}$ in $\mathbf{X}_{\mathbf{2}}$, and vice versa.
(c) The unit ball in $\mathbf{X}_{\mathbf{1}}$ and $\mathbf{X}_{\mathbf{2}}$ may be different. However, the open set in normed vector space $\mathbf{X}_{\mathbf{1}}$ is also open in normed vector space $\mathbf{X}_{\mathbf{2}}$, and vice versa. Please show that by theorem of equivalence of norms.
(d) Now we can prove that if $f$ is continuous in normed vector space $\mathbf{X}_{\mathbf{1}}$, then $f$ is also continuous in normed vector space $\mathbf{X}_{\mathbf{2}}$, and vice versa. Please show that by conclusion in (c).

## Homework 1

## Exercise 4: Open and Closed Sets

The norm ball $\left\{\mathbf{y} \in \mathbb{R}^{n}:\|\mathbf{y}-\mathbf{x}\|_{2}<r, \mathbf{x} \in \mathbb{R}^{n}\right\}$ is denoted by $B_{r}(\mathbf{x})$.

1. Given a set $C \subset \mathbb{R}^{n}$, please show the following are equivalent.
(a) The set $C$ is closed; that is $\mathbf{c l} C=C$.
(b) The complement of $C$ is open.
(c) If $B_{\epsilon}(\mathbf{x}) \cap C \neq \emptyset$ for every $\epsilon>0$, then $\mathbf{x} \in C$.
2. Given $A \subset \mathbb{R}^{n}$, a set $C \subset A$ is called open in $A$ if

$$
C=\left\{\mathbf{x} \in C: B_{\epsilon}(\mathbf{x}) \cap A \subset C \text { for some } \epsilon>0\right\} .
$$

A set $C$ is said to be closed in $A$ if $A \backslash C$ is open in $A$.
(a) Let $B=[0,1] \cup\{2\}$. Please show that $[0,1]$ is not an open set in $\mathbb{R}$, while it is both open and closed in $B$.
(b) Please show that a set $C \subset A$ is open in $A$ if and only if $C=A \cap U$, where $U$ is open in $\mathbb{R}^{n}$.

## Homework 1

## Exercise 5: Extreme Value Theorem

1. Let $C$ be a compact subset of $\mathbb{R}^{n}$ and $f: C \rightarrow \mathbb{R}$ be continuous. Please show that there exist $\mathbf{a}, \mathbf{b} \in C$ such that

$$
f(\mathbf{a}) \leq f(\mathbf{x}) \leq f(\mathbf{b}), \forall \mathbf{x} \in C
$$

(Hint: first prove that $f(C)$ is compact, in $\mathbb{R}$.)
2. Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous. Show that the range of $f$ is a compact interval $[c, d]$ for some $c, d \in \mathbb{R}$.

## Homework 1

## Exercise 6: Basis and Coordinates

Suppose that $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}\right\}$ is a basis of an $n$-dimensional vector space $V$.

1. Show that $\left\{\lambda_{1} \mathbf{a}_{1}, \lambda_{2} \mathbf{a}_{2}, \ldots, \lambda_{n} \mathbf{a}_{n}\right\}$ is also a basis of $V$ for nonzero scalars $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$.
2. Let $V=\mathbb{R}^{n}, \mathbf{A}=\left(\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}\right) \in \mathbb{R}^{n \times n}$ and $\mathbf{B}=\left(\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right) \in \mathbb{R}^{n \times n}$. $\left(\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right)=\left(\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}\right) \mathbf{P}$, where $\mathbf{P} \in \mathbb{R}^{n \times n}$ and $\mathbf{b}_{i} \in \mathbb{R}^{n}$, for any $i \in$ $\{1, \ldots, n\}$. Show that $\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right\}$ is also a basis of $V$ for any invertible matrix P.
3. Suppose that the coordinate of a vector $\mathbf{v}$ under the basis $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}\right\}$ is $\mathbf{x}=$ $\left(x_{1}, x_{2}, \ldots x_{n}\right)$.
(a) What is the coordinate of $\mathbf{v}$ under $\left\{\lambda_{1} \mathbf{a}_{1}, \lambda_{2} \mathbf{a}_{2}, \ldots, \lambda_{n} \mathbf{a}_{n}\right\}$ ?
(b) What are the coordinates of $\mathbf{w}=\mathbf{a}_{1}+\cdots+\mathbf{a}_{n}$ under $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}\right\}$ and $\left\{\lambda_{1} \mathbf{a}_{1}, \lambda_{2} \mathbf{a}_{2}, \ldots, \lambda_{n} \mathbf{a}_{n}\right\}$ ? Note that $\lambda_{i} \neq 0$ for any $i \in\{1, \ldots, n\}$.
4. Suppose $\mathbf{a}=(1,0), \mathbf{b}=(0,1)$ and $\mathbf{c}=(-1,0)$ are three unit vectors in twodimensional space. $\mathbf{v}=(x, y)$ is a vector in two-dimensional space.
(a) Please find the coordinate of $\mathbf{v}$ under basis $\{\mathbf{c}, \mathbf{b}\}$ ? Is the coordinate unique?
(b) Please find all the possible combination coefficients of $\mathbf{v}$ under vectors $\mathbf{a}, \mathbf{b}$ and $\mathbf{c}$, i.e., $\mathbf{v}=x^{\prime} \mathbf{a}+y^{\prime} \mathbf{b}+z^{\prime} \mathbf{c}$.
(c) (Bonus) Each set of combination coefficients $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ in (b) forms a vector in $\mathbb{R}^{3}$. Please find the combination coefficients with minimum $\ell_{1}$-norm.

## Homework 1

## Exercise 7: Derivatives with Matrices

Definition 1 (Differentiability). [1] Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a function, $\mathbf{x}_{0} \in \mathbb{R}^{n}$ be a point, and let $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. We say that $f$ is differentiable at $\mathbf{x}_{0}$ with derivative $L$ if we have

$$
\lim _{\mathbf{x} \rightarrow \mathbf{x}_{0} ; \mathbf{x} \neq \mathbf{x}_{0}} \frac{\left\|f(\mathbf{x})-f\left(\mathbf{x}_{0}\right)-L\left(\mathbf{x}-\mathbf{x}_{0}\right)\right\|_{2}}{\left\|\mathbf{x}-\mathbf{x}_{0}\right\|_{2}}=0 .
$$

We denote this derivative $L$ by $f^{\prime}\left(\mathbf{x}_{0}\right)$.

1. Let $\mathbf{x}, \mathbf{a} \in \mathbb{R}^{n}$ and $\mathbf{y} \in \mathbb{R}^{m}$. Consider the functions as follows. Please show that they are differentiable and find $f^{\prime}(\mathbf{x})$.
(a) $f(\mathbf{x})=\mathbf{a}^{\top} \mathbf{x}$.
(b) $f(\mathbf{x})=\mathbf{x}^{\top} \mathbf{x}$.
(c) $f(\mathbf{x})=\|\mathbf{y}-\mathbf{A x}\|_{2}^{2}$, where $\mathbf{A} \in \mathbb{R}^{m \times n}$.
2. Please follow Definition 1 and give the definition of the differentiability of the functions $f: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}$.
3. Let $f(\mathbf{X})=\operatorname{tr}\left(\mathbf{A}^{\top} \mathbf{X}\right)$, where $\mathbf{A}, \mathbf{X} \in \mathbb{R}^{n \times m}$, and $\operatorname{tr}(\cdot)$ denotes the trace of a matrix. Please discuss the differentiability of $f$ and find $f^{\prime}(\mathbf{X})$ if it is differentiable.
4. (Optional) Let $f(\mathbf{X})=\operatorname{det}(\mathbf{X})$, where $\operatorname{det}(\mathbf{X})$ is the determinant of $\mathbf{X} \in \mathbb{R}^{n \times n}$. Please discuss the differentiability of $f$ rigorously according to your definition in the last part. If $f$ is differentiable, please find $f^{\prime}(\mathbf{X})$. (Hint: Considering the algebraic cofactor of X.)
5. (Optional) Let $\mathbf{S}_{++}^{n}$ be the space of all positive definite $n \times n$ matrices. Prove the function $f: \mathbf{S}_{++}^{n} \rightarrow \mathbb{R}$ defined by $f(\mathbf{X})=\operatorname{tr} \mathbf{X}^{-1}$ is differentiable on $\mathbf{S}_{++}^{n}$. (Hint: Expand the expression $(\mathbf{X}+t \mathbf{Y})^{-1}$ as a power series.)

## Homework 1

## Exercise 8: Rank of Matrices

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{n \times p}$.

1. Please show that
(a) $\operatorname{rank}(\mathbf{A})=\operatorname{rank}\left(\mathbf{A}^{\top}\right)$;
(b) $\operatorname{rank}(\mathbf{A B}) \leq \operatorname{rank}(\mathbf{A})$; (give an example where the equal sign is true)
2. The column space of $\mathbf{A}$ is defined by

$$
\mathcal{C}(\mathbf{A})=\left\{\mathbf{y} \in \mathbb{R}^{m}: \mathbf{y}=\mathbf{A} \mathbf{x}, \mathbf{x} \in \mathbb{R}^{n}\right\} .
$$

The null space of $\mathbf{A}$ is defined by

$$
\mathcal{N}(\mathbf{A})=\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{A} \mathbf{x}=0\right\} .
$$

Notice that, the rank of $\mathbf{A}$ is the dimension of the column space of $\mathbf{A}$.
Please show that
(a) $\operatorname{rank}(\mathbf{A})=\operatorname{dim}(\mathcal{C}(\mathbf{A})$;
(b) $\operatorname{rank}(\mathbf{A})+\operatorname{dim}(\mathcal{N}(\mathbf{A}))=n$.
3. Given that

$$
\begin{equation*}
\operatorname{rank}(\mathbf{A B})=\operatorname{rank}(\mathbf{B})-\operatorname{dim}(\mathcal{C}(\mathbf{B}) \cap \mathcal{N}(\mathbf{A})) . \tag{1}
\end{equation*}
$$

Please show the results in 1.(a) by Eq. (1).

## Homework 1

## Exercise 9: Linear Equations

Consider the system of linear equations in $\mathbf{w}$

$$
\begin{equation*}
\mathbf{y}=\mathbf{X} \mathbf{w} \tag{2}
\end{equation*}
$$

where $\mathbf{y} \in \mathbb{R}^{n}, \mathbf{w} \in \mathbb{R}^{d}$, and $\mathbf{X} \in \mathbb{R}^{n \times d}$.

1. Give an example for " X " and " y " to satisfy the following three situations respectively:
(a) there exists one unique solution;
(b) there does not exist any solution;
(c) there exists more than one solution.
2. Suppose that $\mathbf{X}$ has full column rank and $\operatorname{rank}((\mathbf{X}, \mathbf{y}))=\operatorname{rank}(\mathbf{X})$. Show that the system of linear equations (2) always admits a unique solution.
3. (Normal equations) Consider another system of linear equations in $\mathbf{w}$

$$
\begin{equation*}
\mathbf{X}^{\top} \mathbf{y}=\mathbf{X}^{\top} \mathbf{X} \mathbf{w} \tag{3}
\end{equation*}
$$

Please show that the system (3) always admits a solution. Moreover, does it always admit a unique solution?

## Homework 1

## Exercise 10: Properties of Eigenvalues and Singular Values

1. Suppose the maximum eigenvalue, minimum eigenvalue and maximum singular value of a given symmetric matrix $\mathbf{A} \in S^{n}$ are denoted by $\lambda_{\max }(\mathbf{A})$ and $\lambda_{\min }(\mathbf{A})$, respectively. Please show that

$$
\lambda_{\max }(\mathbf{A})=\sup _{\mathbf{x} \in \mathbb{R}^{n}, \mathbf{x} \neq \mathbf{0}} \frac{\mathbf{x}^{\top} \mathbf{A} \mathbf{x}}{\mathbf{x}^{\top} \mathbf{x}}, \quad \lambda_{\min }(\mathbf{A})=\inf _{\mathbf{x} \in \mathbb{R}^{n}, \mathbf{x} \neq \mathbf{0}} \frac{\mathbf{x}^{\top} \mathbf{A} \mathbf{x}}{\mathbf{x}^{\top} \mathbf{x}} .
$$

(Hint: considering the orthogonal decomposition of A.)
2. (Optional) Suppose $\mathbf{B}=\left(b_{i j}\right) \in \mathbb{R}^{m \times n}$ with maximum singular value $\sigma_{\max }(\mathbf{B})$.
(a) Let $\|\mathbf{B}\|_{2}:=\sup _{\mathbf{x} \in \mathbb{R}^{n}, \mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{B} \mathbf{x}\|_{2}}{\|\mathbf{x}\|_{2}}$. Please show that

$$
\sigma_{\max }(\mathbf{B})=\|\mathbf{B}\|_{2}
$$

(b) Please show that

$$
\sigma_{\max }(\mathbf{B})=\sup _{\mathbf{x} \in \mathbb{R}^{m}, \mathbf{y} \in \mathbb{R}^{n}, \mathbf{x}, \mathbf{y} \neq 0} \frac{\mathbf{x}^{\top} \mathbf{B} \mathbf{y}}{\|\mathbf{x}\|_{2}\|\mathbf{y}\|_{2}} .
$$

## References

[1] T. Tao. Analysis II. Springer, 2015.

