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The major references of this lecture are [3, 2].

1 Introduction

Suppose that we are given a data set D = {(xi, yi)}ni , where xi ∈ Rd and yi ∈ C = {−1, 1},
i = 1, 2, . . . , n. Support vector machine (SVM) tries to find a linear function f : Rd → R in the
form of

f(X; w, b) = b+
d∑
j=1

wjXj ,

such that

yi = sign (f(xi; w, b)).

To fit the data, we need to put all the positive training instances in the positive half space and the
negative training instances in the negative half space.

2 SVM for Linearly Separable Cases

2.1 Maximum Margin

To illustrate the idea of SVM, we consider a simple case where the training samples are linearly
separable, that is, we can find a hyperplane—which separates the feature space into two half-
spaces: the positive halfspace and the negative halfspace—such that positive and negative data
instances fall into the positive and negative halfspaces, respectively.

Definition 1. Let w ∈ Rd, w 6= 0, and b ∈ R. A linear classifier that takes the form of

f(x; w, b) = 〈w,x〉+ b, (1)

defines a hyperplane (its 0-level set)

Hf = {x ∈ Rd : f(x; w, b) = 0},

separating the feature space into two halfspaces: the positive halfspace

H+
f = {x ∈ Rd : f(x; w, b) > 0},

and the negative halfspace

H−f = {x ∈ Rd : f(x; w, b) < 0}, .

Thus, linearly separable indeed assumes the existence of a hyperplane Hf (specified by a linear
classifier f) such that all positive (negative) labeled data instances belong to the positive (negative)
half space H+

f (H−f ). In other words, the labels of the data instances share the same sign with the
halfspaces they fall into. This leads to a concise definition of linearly separable.
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Definition 2. A training sample is linearly separable if there exists (ŵ, b̂) such that

yi = sign (f(xi; ŵ, b̂)), ∀ i ∈ [n], (2)

which is equivalent to

yif(xi; ŵ, b̂) > 0, ∀ i ∈ [n], (3)

where [n] = {1, . . . , n}.

In this section, we assume that the training sample is linearly separable.

Assumption 1. The training sample D = {(xi, yi)}ni is linearly separable.

However, we can find infinitely many hyperplanes such that the inequality in (3) holds. Which
one shall we choose? The SVM classifier makes the decision based on the notion of geometric
margin.

Definition 3. Suppose that we have a data sample D = {(xi, yi)}ni . The geometric margin
γf (xi) of a linear classifier

f(x; w, b) = 〈w,x〉+ b

at a point xi is its signed Euclidean distance to the hyperplane {x : 〈w,x〉+ b = 0}:

γf (xi) =
yi(〈w,xi〉+ b)

‖w‖ .

The geometric margin γf of a linear classifier f for a sample D = {(xi, yi)}ni is the minimum
geometric margin over the points in the sample, that is

γf = min
i∈[n]

γf (xi).

Remark 1. The geometric margin of a data instance to a hyperplane can be negative, which
implies that it falls into the wrong side of the hyperplane. Given a training sample, a negative
geometric margin implies that some of the data instances are misclassified.

SVM looks for the hyperplane which maximizes the geometric margin, and thus it is known as
the maximum margin classifier. Specifically, we can model SVM by the following optimization
problem:

max
w,b

γf = max
w,b

min
i∈[n]

yi(〈w,xi〉+ b)

‖w‖ = max
w,b

1

‖w‖

(
min
i∈[n]

yi(〈w,xi〉+ b)

)
. (4)

Remark 2. The problem in (4) is challenging to solve. One obvious reason is that the variables
are mixtures of continuous variables (w,b) and discrete variables (the index i), leaving many op-
timization methods we are familiar with out of our options. However, a surprising fact is that,
the problem in (4) is equivalent to a convex optimization problem, which can be readily solved by
many popular methods.

2.2 The Convex Version

We show that we can transform the problem in (4) to a convex optimization problem.
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Step 1: Reducing the search space

Recall that the problem in (4) has two sets of variables: the continuous variables (w, b) and the
discrete variable i ∈ [n]. We can see that the domain of the problem in (4) is

D = D1 ×D2,

where

D1 = {(w, b) : w ∈ Rd,w 6= 0, b ∈ R} and D2 = {i : i = 1, 2, . . . , n}.

Notice that, the value of the objective function in problem (4), i.e., the geometric margin γf , is
unchanged if we multiply (w, b) by a positive scalar (why positive?), that is

γf = γλf , ∀ γ > 0.

In other words, for any (w, b) ∈ Rd+1 with w 6= 0, all points of the ray {λ(w, b) : λ > 0} share the
same value of the geometric margin. Thus, for any ray in Rd+1 (except the two rays going upside
and downside), we can consider only one single point of it. But which one shall we pick? Here
comes the first trick in deriving SVM: we pick (w, b) that satisfies the constraint as follows.

min
i
yi(〈w,xi〉+ b) = 1. (5)

This transforms the problem in (4) to

max
w,b

1

‖w‖ , (6)

s.t. min
i
yi(〈w,xi〉+ b) = 1.

Remark 3. Notice that, what we are looking for is indeed a separating hyperplane defined by a
linear classifier. However, different linear classifiers may specify the same separting hyperplanes.
For example, it is easy to see that Hf = Hλf for any λ > 0. Thus, for a set of linear classifiers that
define the same separating hyperplanes, we can only consider one of them. This is the geometric
intuition behind the transformation from (4) to (6).

Step 2: Transforming the objective function to a convex function

In view of the problem in (6), we can see that maximizing 1/‖w‖ is equivalent to minimizing ‖w‖.
Thus, we can transform (6) as follows.

min
w,b

1

2
‖w‖2, (7)

s.t. min
i
yi(〈w,xi〉+ b) = 1.

Remark 4. We note that, though the problems in (6) and (7) are similar to each other, the former
is NOT equivalent to the latter. The key difference is that, the problem in (6) does not allow
w = 0, while the problem (7) does.

Question 1. Under which cases, the problem in (7) admits optimal solutions in the form of (0, b)?
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Step 3: Relaxing the constraints

The constraint in problem (7) is in the form of a minimization problem, which is difficult to deal
with. However, we can relax the constraint (5) by requiring that

yi(〈w,xi〉+ b) ≥ 1, ∀ i ∈ [n],

Then, the problem in (7) changes to

min
w,b

1

2
‖w‖2, (8)

s.t. yi(〈w,xi〉+ b) ≥ 1.

The problem in (8) is the commonly-seem formulation of SVM for the linearly separable data
samples. Though we arrive at (8) by relaxing the constraint in (7), we can show that the problems
(7) and (8) are equivalent to each other, that is, one of the constraints in (8) must hold as an
equality at its optimal solution.

Question 2.

1. Show there is at least one of the constraints holds as an equality at the optimum.

2. Show there exist at least one positive and negative samples such that the equality holds at
the optimum.

3. Can we remove the inequalities that hold strictly at the optimum without affecting the solu-
tion?

Definition 4. Given a linear classifier in the form of (1), the marginal hyperplanes are

Hf (1) = {x ∈ Rd : f(x) = 1} and Hf (−1) = {x ∈ Rd : f(x) = −1}.
The support vectors are the data instances on the marginal hyperplanes, i.e.,

{x : |〈w,x〉+ b| = 1, x ∈ D}.

3 SVM for Non-separable Cases

In most real applications, the training data instances are not linearly separable, that is, for any
hyperplane Hf , there exists xi ∈ D such that

yi(〈w,xi〉+ b) < 0.

Thus, the constraints in (8) can not hold simultaneously. To address this problem, we introduce a
set of nonnegative slack variables {ξi}ni=1 to relax the constraints as

yi(〈w,x〉+ b) ≥ 1− ξi, i ∈ [n].

We can see that the value of ξi measures the vector xi’s violation of the corresponding inequality
yi(〈w,xi〉+b) ≥ 1. To limit the violations over all data instances, we add a penalty to the objective
function in (8), which leads to

min
w,b

1

2
‖w‖2 + C

n∑
i=1

ξi, (9)

s.t. yi(〈w,xi〉+ b) ≥ 1− ξi, ξi ≥ 0, i ∈ [n].

The problem in (9) is a widely-used version of SVM for non-separable cases.
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Question 3. For a linearly separable data sample, shall we arrive at the same separating hyperplane
by solving the problems in (8) and (9), respectively?

Duality plays an important role in analyzing SVM. Besides interesting theoretical results, duality
also motives many efficient algorithms for solving SVM. In this section, we introduce elements of
Lagrangian duality. There are several different approaches to Lagrangian duality. We follow the
approach introduced in [1, 2], which are based on geometric observations.

4 The Primal Problem

We consider the problem—that is, the primal problem—as follows.

min
x
f(x) (10)

s.t. gi(x) ≤ 0, i = 1, . . . ,m,

hi(x) = 0, i = 1, . . . , p,

x ∈ X,

where f : Rn → R, gi : Rn → R, i ∈ [m], and hi : Rn → R, i ∈ [p], are all continuously differentiable,
and X ⊆ Rn. To simplify notations, let g : Rn → Rm be a vector function whose ith component
is gi, and h : Rn → Rp be a vector function whose ith component is hi. Then, we can write the
problem in (10) in a more compact form as follows.

min
x
f(x) (11)

s.t.g(x) ≤ 0,

h(x) = 0,

x ∈ X.

We denote the feasible set of (11) by

D0 = {x : g(x) ≤ 0,h(x) = 0,x ∈ X}. (12)

Each element in D0 is called a feasible solution. The optimal function value is

f∗ = inf
x∈D0

f(x). (13)

Assumption 2. Feasibility and Boundedness The feasible set is nonempty and the objective
function is bounded from below, that is,

−∞ < f∗ = inf
x∈D0

f(x) <∞.

Remark 5. Notice that, Assumption 2 does not assume the existence of the optimum of the
problem in (11).

5 Geometric Observations

We used to analyze and/or solve optimization problems by focusing on the problem domain D0, as
the variable x lies in D0, and so does the optimum we are looking for (if it exists). Surprisingly,
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taking the perspective of the constraint-cost pairs as x goes over X brings us fresh insights.
Specifically, we define s : Rn → Rm+p+1 by

s(x) = (g(x),h(x), f(x)), (14)

and

S = {s(x) : x ∈ X}. (15)

Figure 1 shows a simple example of S for problems with only one inequality constraint. Indeed,
the key idea to Lagrangian duality in [1, 2] is to interpret the primal problem (11) by the geometric
properties of the set S via hyperplanes.

S = {(g(x), f(x)) : x 2 X}

(0, f⇤)

!"#$%"$&'()$$$$$$*f⇤

Figure 1: Illustration of the set S of the constraint-cost pairs for a simple problem with only one
inequality constraint.

5.1 The Lagrangian

To illustrate the idea of Lagrangian duality from a geometric perspective, we first consider a simple
problem with only one inequality constraint. We show the set S of constraint-cost pairs in Figure
1. We can see that, the optimal function value f∗ of the primal problem is indeed the second
component of the red dot, that is, the point with the smallest value of the second component
among the points whose first components are non-positive.

Thus, a natural question arises, instead of solving the primal problem (11), can we find the opti-
mal function value f∗ by analyzing the set S? The answer is yes. The working horse is the (simple)
hyperplanes. The linear function that specifies the hyperplanes is the so-called Lagrangian.

Definition 5. Associated with the primal problem, we define the Lagrangian L : Rn×Rm×Rp → R
as

L(x, λ, µ) = f(x) +
m∑
i=1

λigi(x) +

p∑
i=1

µihi(x).

Notice that, we can understand the Lagrangian as a linear function defined at the point s(x),
which is given by (14).
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S = {(g(x), f(x)) : x 2 X}

(0, f⇤)

<latexit sha1_base64="oVLBFrmwRu3CKL6ddjgZO73sdiA=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvYgpSZouiy4MZlBfuAdiiZNNOGZjJjkimWod/hxoUibv0Yd/6NmXYW2nrgXg7n3EtujhdxprRtf1u5tfWNza38dmFnd2//oHh41FJhLAltkpCHsuNhRTkTtKmZ5rQTSYoDj9O2N75N/faESsVC8aCnEXUDPBTMZwRrI7nlYfnpvHLhp73SL5bsqj0HWiVORkqQodEvfvUGIYkDKjThWKmuY0faTbDUjHA6K/RiRSNMxnhIu4YKHFDlJvOjZ+jMKAPkh9KU0Giu/t5IcKDUNPDMZID1SC17qfif1421f+MmTESxpoIsHvJjjnSI0gTQgElKNJ8agolk5lZERlhiok1OBROCs/zlVdKqVZ2rqn1/WarXsjjycAKnUAYHrqEOd9CAJhB4hGd4hTdrYr1Y79bHYjRnZTvH8AfW5w/IApAa</latexit>

(g(x0), f(x0))

Figure 2: Illustration of the hyperplanes specified by the Lagrangian.

5.2 Hyperplanes Defined by the Lagrangian

Hyperplanes can be specified by level sets of linear functions. Given a constant c, the Lagrangian
defines a hyperplane in Rm+p+1—where the set S of constraint-cost pairs lies in—by

HL(c) = {(y,w, z) : z + 〈λ,y〉+ 〈µ,w〉 = c, z ∈ R,y ∈ Rm,w ∈ Rp}.

The normal of HL(c) is (λ, µ, 1), which implies that the hyperplane is nonvertical (why?).
Figure 2 shows the hyperplanes defined by the Lagrangian for a simple problem with only

inequality constraints. The two hyperplanes share the same normal vector (λ, 1). As the function
value of the Lagrangian at the yellow point (g(x′), f(x′)) is clearly given by

L(x′, λ) = f(x′) + λg(x′),

the hyperplane which go through the point (g(x′), f(x′)) is

HL(L(x′, λ)) = {(y, z) : z + λy = L(x′, µ) = f(x′) + λg(x′)}.

Moreover, we can see that, the hyperplane HL(L(x′, λ)) intercepts the vertical axis {(0, z) : z ∈ R}
at the level L(x′, λ).

5.3 The Lagrangian Dual Function

The geometric properties we observe in Section 5.2 lead us to the fact that, for a nonvertical
hyperplane, the level of interception of the vertical axis is indeed the (linear) function value that
defines the hyperplane. Thus, given a vector (λ, µ, 1) ∈ Rm+p+1, if we define

q(λ, µ) = inf
x∈X

L(x, λ, µ), (16)
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the hyperplane HL(q(λ, µ)) intercepts the vertical axis at the level q(λ, µ) if it exists. Figure 2
shows a simple example where a hyperplane intercepts the vertical axis at the level q(λ).

In general, What is the relationship between q(λ, µ) and f∗? In view of Figure 2, a reasonable
guess would be

q(λ, µ) ≤ f∗, ∀λ ≥ 0,

where λ = (λ1, λ2, . . . , λm) and λ ≥ 0 is an abbreviation for λi ≥ 0, i ∈ [m]. Indeed, the above
guess is true, and we have the result as follows.

Lemma 1. For any λ ≥ 0, the following result holds:

q(λ, µ) ≤ f∗.

Proof. By definition, we have

q(λ, µ) = inf
x∈X

L(x, λ, µ)

= inf
x∈X

f(x) +
m∑
i=1

λigi(x) +

p∑
i=1

µihi(x)

≤ inf
x∈D0

f(x) +
m∑
i=1

λigi(x) +

p∑
i=1

µihi(x).

The definition of D0 implies that, for any x ∈ D0, we have

gi(x) ≤ 0, i ∈ [m], and hi(x) = 0, i ∈ [p].

Thus, the above inequality becomes

q(λ, µ) ≤ inf
x∈D0

f(x) +

m∑
i=1

λigi(x) +

p∑
i=1

µihi(x) ≤ inf
x∈D0

f(x) = f∗,

which completes the proof.

The function q(λ, µ) is the so-called Lagrangian dual function. The domain of q is the set
for which q(λ, µ) is finite:

dom q = {(λ, µ) : q(λ, µ) > −∞}.

We can similarly define the dual feasible set by

D1 = {(λ, µ) : λ ≥ 0} ∩ dom q = {(λ, µ) : λ ≥ 0, q(λ, µ) > −∞}.

Remark 6. We do not require that λ ≥ 0 for the points in dom (q).

A surprising result is that, the Lagrangian dual function q is concave, no matter the primal
problem is convex or not.

Theorem 1. The domain of q is convex and q is concave over dom (q).
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Proof. We first show that dom (q) is convex.
Suppose that q(λ1, µ1) and q(λ2, µ2) are finite and (λ1, µ1) 6= (λ2, µ2). Let θ ∈ [0, 1].

q(θλ1 + (1− θ)λ2, θµ1 + (1− θ)µ2) = inf
x∈X

L(x, θλ1 + (1− θ)λ2, θµ1 + (1− θ)µ2)

= inf
x∈X

θL(x, λ1, µ1) + (1− θ)L(x, λ2, µ2)

≥ inf
x∈X

θL(x, λ1, µ1) + inf
x∈X

(1− θ)L(x, λ2, µ2)

=θq(λ1, µ1) + (1− θ)q(λ2, µ2)
>−∞.

Thus, we have dom (q) is convex.
The concavity of q can easily be seen by noting that q is the infimum of a set of linear functions

of (λ, µ).
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