1 Introduction

Many popular ML models involve nondifferentiable objective functions, e.g., Lasso introduced as a special case of weighted least squares models. We generalize the concept of gradient for differentiable functions to the so-called subgradient for nondifferentiable convex functions.

2 Subgradients and Subdifferentials

Definition 1. A function $f : \mathbb{R}^n \to \bar{\mathbb{R}}$ is called proper if

1. $\exists x \in \mathbb{R}^n$, such that $f(x) < \infty$;
2. $f(x) > -\infty$, $\forall x \in \mathbb{R}^n$.

Definition 2. Let $f : \mathbb{R}^n \to \bar{\mathbb{R}}$ be a proper convex function and let $x \in \text{dom } f$. A vector $g \in \mathbb{R}^n$ such that

$$f(y) \geq f(x) + \langle g, y - x \rangle, \forall y \in \mathbb{R}^n$$

is called a subgradient of f at x.

![Figure 1: A subgradient.](image)

Question 1. In Definition 2, shall we ask $y \in \text{dom } f$?

Example 1. Consider function $f(x) = |x|, x \in \mathbb{R}$. Find the subgradient of f at 0.

Solution: Let $g \in \partial f(0)$. Then

$$f(y) = |y| \geq f(0) + g(y - 0) = gy.$$

Clearly, the above inequality holds for all $y \in \mathbb{R}$ if and only if $g \in [-1, 1]$. Thus, we have

$$\partial f(0) = [-1, 1],$$
which is not unique.

Remark 1 (A geometric interpretation of subdifferential). Inspired by Fig. 1, we can link the subgradient of \(f \) to its epigraph. Indeed, for any \((y, t) \in \text{epi } f\), we have
\[
t \geq f(y) \geq f(x) + \langle g, y - x \rangle,
\]
which can be rewritten as
\[
\begin{pmatrix} g \\ -1 \end{pmatrix} \cdot \begin{pmatrix} y \\ t \end{pmatrix} - \begin{pmatrix} x \\ f(x) \end{pmatrix} \leq 0.
\]
(2)
The inequality (2) is the variational inequality characterizing the projection of a point lying on the ray with base \((x, f(x))\) and direction \((g, -1)\) onto the set \(\text{epi } f\).

Furthermore, Fig. 1 implies that the vector \((g, -1)\) determines a hyperplane supporting \(\text{epi } f\) at the point \((x, f(x))\).

Definition 3. The set of all subgradients of \(f \) at \(x \) is called the subdifferential of \(f \) at \(x \) and is denoted by \(\partial f(x) \).

3 Subdifferential Calculus

Theorem 1. Let \(f : \mathbb{R}^n \to \mathbb{R} \) be convex and \(x \in \text{int}(\text{dom } f) \). Then, \(f \) is locally Lipschitz continuous at \(x \), that is, \(\exists \epsilon > 0 \) and \(M \geq 0 \) such that
\[
|f(y) - f(x)| \leq M \|y - x\|, \forall \{y : \|y - x\| \leq \epsilon\}.
\]

Theorem 2. [1] Let \(f : \mathbb{R}^n \to \mathbb{R} \) be convex and let \(x \in \text{int}(\text{dom } f) \). Then
1. the subdifferential \(\partial f(x) \) is a nonempty, bounded, closed, and convex set;
2. for any \(v \in \mathbb{R}^n \), we have
\[
f'(x; v) = \lim_{t \downarrow 0} \frac{f(x + tv) - f(x)}{t} = \max_{g \in \partial f(x)} \langle v, g \rangle,
\]
where \(f'(x; v) \) is the directional derivative of \(f \) at \(x \) along the direction \(v \);
3. if \(f \) is differentiable at \(x \), then \(\partial f(x) = \{\nabla f(x)\} \).

Proof.

1. We first show that \(\partial f(x) \) is nonempty.

As the point \((x, f(x))\) is a boundary point of \(\text{epi } f\), the supporting hyperplane theorem implies that we can separate \((x, f(x))\) and \(\text{epi } f\) by a hyperplane. That is, there exists a \((d, \alpha) \in \mathbb{R}^{n+1}\) and \((d, \alpha) \neq 0\) such that
\[
\langle (d, \alpha), (y, t) \rangle \leq \langle (d, \alpha), (x, f(x)) \rangle, \forall (y, t) \in \text{epi } f,
\]
which can be rewritten as
\[
\langle d, y \rangle + \alpha t \leq \langle d, x \rangle + \alpha f(x), \forall (y, t) \in \text{epi } f.
\]
(3)
As the inequality (3) holds for all \((y,t) \in \text{epi } f\), we conclude \(\alpha \leq 0\). We further claim that \(\alpha \neq 0\). Suppose not, that is, \(\alpha = 0\) (and thus \(d \neq 0\)), the inequality (3) becomes
\[
\langle d, y - x \rangle \leq 0, \forall (y,t) \in \text{epi } f.
\]
As \(x \in \text{int } (\text{dom } f)\), there exists a small number \(\epsilon > 0\) such that \(x + \epsilon d \in \text{dom } f\). Replacing \(y\) in (4) by \(x + \epsilon d\) leads to a contradiction. Thus, we must have \(\alpha < 0\). Then, by replacing \(t\) by \(f(y)\) in (3) and dividing both sides by \(\alpha\), we have
\[
f(y) \geq f(x) + \langle -d/\alpha, y - x \rangle, \forall y,
\]
which implies that \(-d/\alpha \in \partial f(x)\). Therefore, the set \(\partial f(x)\) is nonempty.

We next show the boundedness of \(\partial f(x)\). Due to Theorem 1, we can find an \(\epsilon > 0\) and \(M \geq 0\) such that \(\forall \|y - x\| \leq \epsilon\), we have
\[
|f(y) - f(x)| \leq M\|y - x\|.
\]
For any \(g \in \partial f(x)\) and \(g \neq 0\), we choose
\[
x' = x + \epsilon g/\|g\|,
\]
which leads to
\[
\epsilon \|g\| = \langle g, x' - x \rangle \leq f(x') - f(x) \leq M\|x' - x\| = M\epsilon.
\]
Thus, \(\partial f(x)\) is bounded.

The closedness and convexity of \(\partial f(x)\) can be seen from its definition that, it is the intersection of a set of closed half-spaces.

2. We omit the proof here.

3. For any \(v \in \mathbb{R}^n\) and \(g \in \partial f(x)\), we have
\[
\langle \nabla f(x), v \rangle = f'(x; v) \geq \langle g, v \rangle.
\]
Changing the sign of \(v\), we conclude that
\[
\langle \nabla f(x), v \rangle = \langle g, v \rangle.
\]
By letting \(v = e_k, k = 1, \ldots, n\), we have \(g = \nabla f(x)\).

\(\Box\)

Lemma 1. [2] Suppose that \(f : \mathbb{R}^n \to \mathbb{R}\) is a convex function. For \(\alpha > 0\), let \(h(x) = \alpha f(x)\). Then, \(h\) is convex, and \(\partial h(x) = \alpha \partial f(x)\) for every \(x\).

Proof. We show the result directly from the definition. Indeed, \(g \in \partial f(x)\) if and only if for all \(y\)
\[
h(y) = \alpha f(y) \geq \alpha [f(x) + \langle g, y - x \rangle] = h(x) + \langle \alpha g, y - x \rangle,
\]
which implies that \(\alpha g \in \partial h(x)\).

\(\Box\)
Lemma 2. [2] Suppose that \(f : \mathbb{R}^m \to \mathbb{R} \) is a convex function, \(A \in \mathbb{R}^{m \times n} \), and \(b \in \mathbb{R}^m \). Let \(h(x) = f(Ax + b) \). Then, for any \(x \), we have
\[
\partial h(x) = A^T \partial f(Ax + b).
\]
Proof. We show the result directly from the definition. Indeed, we have \(g \in \partial f(Ax + b) \) if and only if
\[
h(y) = f(Ay + b) \geq f(Ax + b) + \langle g, Ay - Ax \rangle = h(x) + \langle A^T g, y - x \rangle,
\]
which implies that \(A^T g \in \partial h(x) \).

Theorem 3 (Moreau-Rockafellar Theorem). [2] Assume that \(f = f_1 + f_2 \), where \(f_i : \mathbb{R}^n \to \mathbb{R} \), \(i = 1, 2 \), are convex proper functions. If there exists a point \(x_0 \in \text{dom} \ f \) such that \(f_1 \) is continuous at \(x_0 \), then
\[
\partial f(x) = \partial f_1(x) + \partial f_2(x), \forall x \in \text{dom} \ f.
\]

Definition 4. A convex function is called closed if its epigraph is a closed set.

Lemma 3. [1] Let functions \(f_i(x), i = 1, \ldots, m \), be closed and convex. Then function \(f(x) = \max_{1 \leq i \leq m} f_i(x) \) is also closed and convex. For any \(x \in \text{int} (\text{dom} \ f) = \bigcap_{i=1}^m \text{int} (\text{dom} \ f_i) \), we have
\[
\partial f(x) = \text{conv} \{ \partial f_i(x) : i \in I(x) \},
\]
where \(I(x) = \{ i : f_i(x) = f(x) \} \).

Lemma 4. Let \(\Delta \) be a set and \(f(x) = \sup \{ \phi(y, x) : y \in \Delta \} \). Suppose that for any fixed \(y \in \Delta \), the function \(\phi(y, x) \) is closed and convex in \(x \). Then, \(f(x) \) is closed and convex. For and \(x \) from
\[
\text{dom} \ f = \{ x \in \mathbb{R}^n : \exists \gamma \text{ such that } \phi(y, x) \leq \gamma, \forall y \in \Delta \},
\]
we have
\[
\partial f(x) \supseteq \text{conv} \{ \partial \phi_{x}(y, x) : y \in I(x) \},
\]
where \(I(x) = \{ y : \phi(y, x) = f(x) \} \). When \(\Delta \) is compact and \(\phi(y, x') \) is continuous (upper semicontinuous) in \(y \) for all \(x' \) in a neighborhood of \(x \), we get an equality above.

Example 2. Consider function \(f(x) = |x|, x \in \mathbb{R} \). Find \(\partial f(x) \).

Solution: We find \(\partial f(x) \) by two different approaches.

1. We have derived that \(\partial f(0) = [-1, 1] \). Moreover, by noting that \(f(x) \) is differentiable for \(x \neq 0 \), we have
\[
\partial f(x) = \begin{cases}
1, & \text{if } x > 0, \\
[-1, 1], & \text{if } x = 0, \\
-1, & \text{if } x < 0.
\end{cases}
\]

2. Let \(f_1(x) = x \) and \(f_2(x) = -x \). Clearly, we have \(\partial f_1(x) = \{ \nabla f_1(x) \} = \{ 1 \} \), and similarly \(\partial f_2(x) = \{ -1 \} \).
Moreover, it is easy to see that $f(x) = \max\{f_1(x), f_2(x)\}$, and thus
\[
\partial f(x) = \text{conv} \{\partial f_i(x) : f_i(x) = f(x)\}
\]
is given by
\[
\begin{cases}
1, & \text{if } x > 0, \\
[-1, 1], & \text{if } x = 0, \\
-1, & \text{if } x < 0.
\end{cases}
\]

Example 3. Let $f(x) = \|x\|_1$, where $x \in \mathbb{R}^n$. Find $\partial f(x)$.

Solution: We compute $\partial f(x)$ by two different approaches.

1. By Lemma 2 and Theorem 3, we have
\[
f(x) = \|x\|_1 = \sum_{i=1}^n |x_i| = \sum_{i=1}^n |e_i^T x|
\]
\[
\Rightarrow \partial f(x) = \partial \left(\sum_{i=1}^n |e_i^T x| \right) = \sum_{i=1}^n \partial |e_i^T x| = \sum_{i=1}^n e_i \partial |x_i|
\]
is given by
\[
\begin{cases}
v \in \mathbb{R}^n : v_i = \begin{cases}
1, & \text{if } x_i > 0, \\
[-1, 1], & \text{if } x_i = 0, \\
-1, & \text{if } x_i < 0.
\end{cases}
\end{cases}
\]

2. By Lemma 3, we have
\[
f(x) = \|x\|_1 = \sum_{i=1}^n |x_i| = \max \{ \langle s, x \rangle : s \in \mathbb{R}^n, |s_i| = 1, \forall i \}
\]
\[
\Rightarrow \partial f(x) = \text{conv} \{ s : s \in \mathbb{R}^n, |s_i| = 1, \forall i, \langle s, x \rangle = \|x\|_1 \}
\]
is given by
\[
\begin{cases}
v \in \mathbb{R}^n : v_i = \begin{cases}
1, & \text{if } x_i > 0, \\
[-1, 1], & \text{if } x_i = 0, \\
-1, & \text{if } x_i < 0.
\end{cases}
\end{cases}
\]

Example 4. Let $f(x) = \|x\|_\infty$, where $x \in \mathbb{R}^n$. Find $\partial f(x)$.

Solution: We compute $\partial f(x)$ by two different approaches.

1. Let $f_i(x) = |x_i|, i = 1, 2, \ldots, n$, where $x \in \mathbb{R}^n$. Then we have
\[
f(x) = \max_{1 \leq i \leq n} f_i(x).
\]
\[
\text{It’s easy to see that } f_i \text{ is closed and convex for } i = 1, 2, \ldots, n.
\]
We first find \(\partial f_i(x) \), \(i = 1, 2, \ldots, n \). Since \(f_i(x) = \max\{x_i, -x_i\} \), we have

\[
\partial f_i(x) = \begin{cases}
 e_i, & x_i > 0, \\
 \text{conv} \{-e_i, e_i\}, & x_i = 0, \\
 -e_i, & x_i < 0.
\end{cases}
\]

Note that \(\text{conv} \{-e_i, e_i\} \) is the line segment connecting \(-e_i\) and \(e_i \).

By Lemma 3, we have

\[
\partial f(0) = \text{conv} \{ \text{conv} \{-e_i, e_i\} : i = 1, 2, \ldots, n \}
\]

\[
= \{ x \in \mathbb{R}^n : \sum_{i=1}^{n} |x_i| \leq 1 \}.
\]

Besides, for all \(x = (x_1, \ldots, x_n) \in \mathbb{R}^n \setminus \{0\} \), suppose that

\[
\Delta_x = \{ i : |x_i| = \|x\|_\infty \} = \{i_{\alpha}\}_{\alpha=1}^{m} \cup \{j_{\beta}\}_{\beta=1}^{k},
\]

where

\[
x_{i_{\alpha}} > 0, \quad \alpha = 1, \ldots, m,
\]

\[
x_{j_{\beta}} < 0, \quad \beta = 1, \ldots, k.
\]

Hence we have

\[
\partial f(x) = \text{conv} \{ \partial f_i(x) : i \in \Delta_x \}
\]

\[
= \text{conv} \{ e_{i_1}, \ldots, e_{i_m}, -e_{j_1}, \ldots, -e_{j_k} \}
\]

\[
= \left\{ y \in \mathbb{R}^n : \sum_{i=1}^{n} \varepsilon_i y_i = 1, \varepsilon_i y_i \geq 0, y_i = 0 \text{ if } \varepsilon_i = 0 \right\},
\]

where \(\varepsilon_i \) is defined as

\[
\varepsilon_i = \begin{cases}
 1, & x_i = \|x\|, \\
 0, & |x_i| < \|x\|, \\
 -1, & x_i = -\|x\|.
\end{cases}
\]

Therefore, we have

\[
\partial f(x) = \begin{cases}
 \{ y \in \mathbb{R}^n : \|y\|_1 \leq 1 \}, & x = 0, \\
 \{ y \in \mathbb{R}^n : \sum_{i=1}^{n} \varepsilon_i y_i = 1, \varepsilon_i y_i \geq 0, y_i = 0 \text{ if } \varepsilon_i = 0 \}, & x \neq 0.
\end{cases}
\]

2. By Lemma 4, we have

\[
f(x) = \|x\|_\infty = \max_{1 \leq i \leq n} |x_i| = \sup_{1 \leq i \leq n} \langle x, y \rangle = \|y\|_1 \leq 1 \}
\]

\[
\Rightarrow \partial f(x) = \text{conv} \{ y \in \mathbb{R}^n : \langle x, y \rangle = \|x\|_\infty, \|y\|_1 \leq 1 \}.
\]
It’s easy to see that \(\{ y \in \mathbb{R}^n : \langle x, y \rangle = 1, \| y \|_1 \leq 1 \} \) is convex. Hence we have

\[
\partial f(x) = \{ y \in \mathbb{R}^n : \langle x, y \rangle = \| x \|_\infty, \| y \|_1 \leq 1 \}, \quad \forall x \in \mathbb{R}^n.
\]

Question 2. We got two forms of \(\partial f(x) \) by two approaches. Are they the same?

Example 5. Let \(f : \mathbb{S}^n \to \mathbb{R} \) be defined by \(f(X) = \lambda_{\max}(X) \). Find \(\partial f(X) \) [3].

Solution:

By eigen-decomposition, a symmetric matrix can be written as

\[
X = U\sigma U^\top,
\]

where \(U^\top U = I \) and \(\sigma = \text{diag}(\lambda_1, \ldots, \lambda_n) \) with \(\lambda_1 \geq \cdots \geq \lambda_n \). Let \(U = (u_1, \ldots, u_n) \), i.e., \(u_i \) is the \(i \)th eigenvector corresponding to \(\lambda_i \). We then write \(f(X) \) as the maximum of a set of linear functions over \(X \):

\[
f(X) = \max \{ \langle s, Xs \rangle : \| s \| = 1 \}
= \max \{ \langle ss^\top, X \rangle : \| s \| = 1 \}
\]

Assume that \(\lambda_{\max} = \lambda_1 = \cdots = \lambda_r \), where \(1 \leq r \leq n \). We can see that \(u_i \in \arg\max_{\| s \|=1} \langle ss^\top, X \rangle \), \(i = 1, \ldots, r \). Let \(U^r = (u_1, \ldots, u_r) \). Then,

\[
S^* := \arg\max_{\| s \|=1} \langle ss^\top, X \rangle = \{ v : v \in \text{span } U^r, \| v \| = 1 \}
= \{ v : v = U^r Q, Q \in \mathbb{R}^{r \times r}, Q^\top Q = I \}

\Rightarrow \partial f(X) = \text{conv} \left\{ vv^\top : v \in S^* \right\} = \left\{ U^r G(U^r)^\top : G \succeq 0, \text{trace } G = 1 \right\}.
\]
References

