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Key distinction is not linear vs. nonlinear,
but convex or. nonconvex.

R. Tyrrell Rockafellar

1 Introduction

Many popular machine learning models take the form of

min
w

f(w) + λΩ(w),

where f is the so-called loss function that measures how well the model fits the training data, Ω
is a regularization term, and λ > 0 is the regularization parameter. When f is the least squares
loss and Ω is the square of the ℓ2 norm of the model parameters, we have the well-known ridge
regression:

min
w

1

2
∥y −Xw∥22 + λ∥w∥22. (1)

If we replace the regularization term in (1) by the ℓ1 norm, we have another popular model, that
is, Lasso, as follows.

min
w

1

2
∥y −Xw∥22 + λ∥w∥1. (2)

We have seen that, the ridge regression admits a closed form solution, while the computational cost
can be expensive as it involves finding the inverse of a large-scale matrix. Noticing that the objective
function in (1) is differentiable, we can use the classical gradient descent method to iteratively find
a solution up to a given accuracy. However, this approach does not work for the Lasso problem in
(2), as the regularizer is not differentiable.

Problems like (2) involving nondifferentiable terms are the so-called nonsmooth problems, which
consist of a major research topic—called sparse learning—in machine learning. To deal with the
nonsmooth problems, we need to equip us with a suite of new tools. In the next couple of lectures,
we study a type of optimization problems—that is, convex optimization problems—which includes
many popular sparse learning models as special cases.

2 Affine Sets

Definition 1. A set C ⊆ Rn is affine if the line through any two distinct points in C lies in C,
i.e., if for any x1,x2 ∈ C, where x1 ̸= x2, and θ ∈ R, we have θx1 + (1− θ)x2 ∈ C.

Definition 2. A point x is called an affine combination of points x1,x2, . . . ,xm if there exists
θ1, θ2, . . . , θm ∈ R such that

x = θ1x1 + θ2x2 + . . .+ θmxm

and

θ1 + θ2 + . . .+ θm = 1.
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Figure 1: The line passing through x1 and x2 is described parametrically by θx1+(x− θ)x2, where
θ goes over the real line.

If C is an affine set and x0 ∈ C, then the set

V = C − x0 = {x− x0 : x ∈ C}

is a subspace. Thus, we can also describe the affine set C by

C = V + x0 = {v + x0 : v ∈ V }.

The dimension of an affine set C is the dimension of the subspace V = C − x0, where x0 is an
arbitrary point in C.

Example 1 (Solution set of linear equations). Let A ∈ Rm×n and b ∈ Rm. The solution set
C = {x : Ax = b} is an affine set.

Definition 3. The affine hull of a set C is the set of all affine combinations of points in C, which
is denoted aff C:

aff C = {θ1x1 + · · ·+ θkxk : x1, . . . ,xk ∈ C, θ1 + · · ·+ θk = 1}.

The affine dimension of a set C is the dimension of its affine hull.

Proposition 1. The affine hull of set C is the smallest affine set that contains C.

Definition 4. The relative interior of the set C, denoted relint C, is its interior relative to aff C:

relint C = {x ∈ C : ∃ r > 0, B(x, r) ∩ aff C ⊆ C},
where B(x, r) = {y : ∥y− x∥ ≤ r} is the ball of radius r and centered at x. The relative boundary
of C is defined as C̄ \ relint C, where C̄ is the closure of C.

3 Convex Sets

Definition 5. In Rn, a point x is a convex combination of the points {x1, . . . ,xk} if

x = θ1x1 + θ2x2 + · · ·+ θkxk,

where θi ≥ 0 for i = 1, . . . , k and

θ1 + θ2 + . . .+ θk = 1.
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Figure 2: Convex and nonconvex sets.

Definition 6. The convex hull of a set C ⊆ Rn, denoted by conv C, is the set of all convex
combinations of points in C:

conv C =

{
k∑

i=1

θixi : xi ∈ C, θi ≥ 0,

k∑
i=1

θi = 1

}
.

The idea of convex combination can be generalized to include infinite sums, integrals, and, in
the most general form, probability distributions [1] (expectation).

Figure 3: Convex hull.

Definition 7. A set C is convex if the line segment between any two points in C lies in C; that
is, if ∀x1,x2 ∈ C and ∀ θ ∈ [0, 1], we have

θx1 + (1− θ)x2 ∈ C.

Example 2. Suppose p : Rn → R satisfies p(x) ≥ 0 for all x ∈ C and
∫
C p(x)dx = 1, where

C ⊆ Rn is convex. Then ∫
C
p(x)xdx ∈ C,

if the integral exists.

Definition 8. A function f : Rn → Rm is affine if it takes the form of:

f(x) = Ax+ b,

where A ∈ Rm×n and b ∈ Rm.
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Proposition 2.

1. The intersection ∩i∈ICi of any collection {Ci : i ∈ I} of convex sets is convex, where I is an
index set.

2. The closure and the interior of a convex set are convex.

3. The image and the inverse image of a convex set under an affine function are convex.

Example 3.

1. hyperplane: {x : a⊤x = b}, where a ̸= 0 and b ∈ R.

2. halfspace: {x : a⊤x ≤ b}, where a ̸= 0 and b ∈ R.

3. norm ball: {x : ∥x− x0∥ ≤ r}, where r > 0.

4. polyhedron: {x : a⊤i x ≤ bi, i = 1, . . . ,m}, where ai ̸= 0 and bi ∈ R for i = 1, . . . ,m.

5. positive semi-definite matrices.

Definition 9. A set C is called a cone, or nonnegative homogeneous, if ∀x ∈ C and θ ∈ [0,∞),
we have θx ∈ C. A set C is a convex cone if it is convex and a cone; that is, ∀x1,x2 ∈ C and
θ1, θ2 ≥ 0, we have

θ1x1 + θ2x2 ∈ C.

Figure 4: Cones.

• A point of the form θ1x1 + · · · + θmxm with all nonnegative θ1, . . . , θm is called a conic
combination (or a nonnegative linear combination) of x1, . . . ,xm.

Definition 10. The conic hull of a set C is the set of all conic combinations of points in C, i.e.,
∀x1, . . . ,xm ∈ C,

{θ1x1 + · · ·+ θmxm : θi ≥ 0, i = 1, . . . , k},

which is also the smallest convex cone that contains C.
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Figure 5: Conic hulls.

4 Operations that Preserve Convexity

Lemma 1. Let I be an arbitrary index set. If the sets Si ⊂ Rn, i ∈ I, are convex, then the set
S = ∩i∈ISi is convex.

Proof. Let x1,x2 ∈ S. Thus, ∀ i ∈ I, we have x1,x2 ∈ Si. As Si is convex, the line segment
between x1 and x2 also lies in Si. Since this applies to all Si, i ∈ I, the line segment also lies in
their intersection.

Definition 11. We define the product of a set S by a scalar c to get

cS = {cx : x ∈ S}.

The Minkowski sum of two sets is defined by:

S1 + S2 = {x+ y : x ∈ S1,y ∈ S2}.

Lemma 2. Let S1 and S2 be convex sets in Rn and let a, b ∈ R. Then, the set S = aS1 + bS2 is
convex.

Proof. Let S1 ⊃ z1 = ax1 + bx2 and S2 ⊃ z2 = ay1 + by2, where xi, ,yi ∈ Si, i = 1, 2. Then,
∀ θ ∈ [0, 1], we have

θz1 + (1− θ)z2 = a(θx1 + (1− θ)y1) + b(θx2 + (1− θ)y2) ∈ S.

Lemma 3. Let S ⊆ Rn be convex and f : Rn → Rm be an affine function. Then, the image of S
under f

f(S) = {f(x) : x ∈ S},

is convex.

Proof. Let y1,y2 ∈ f(S), i.e., y1 = Ax1 + b and y2 = Ax2 + b. Then,

θy1 + (1− θ)y2 = A(θx1 + (1− θ)x2) + b ∈ f(S).
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Lemma 4 (Carathéodory’s Lemma [2]). Suppose that S ⊂ Rn. Then, every element of conv S is
a convex combination of at most n+ 1 points of S.

Proof. Let x =
∑m

i=1 θixi be a convex combination of m > n+1 points of S. We shall show that m
can be reduced by one. If θi = 0 for some i, then we are done. Otherwise, assume that all θi > 0.
As m > n+ 1, we can find {αi}mi=1, not all equal 0, such that

α1

[
x1
1

]
+ α2

[
x2
1

]
+ · · ·+ αm

[
xm
1

]
= 0.

Let τ = min{θi/αi : αi > 0} and θ′i = θi − ταi, i = 1, 2, . . . ,m. Still, we have
∑m

i=1 θ
′
i = 1 and∑m

i=1 θ
′
ixi = x. The definition of τ leads to a fact that at least one θ′i = 0 and we can delete the

ith point. Repeating the above procedure, we can reduce the number of points to n+ 1.
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